Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An unusual cGMP pathway underlying depolarizing light response of the vertebrate parietal-eye photoreceptor

Abstract

All cellular signaling pathways currently known to elevate cGMP involve the activation of a guanylyl cyclase to synthesize cGMP. Here we describe an exception to this rule. In the vertebrate parietal eye, the photoreceptors depolarize to light under dark-adapted conditions, unlike rods and cones but like most invertebrate photoreceptors. We report that the signaling pathway for this response involves a rise in intracellular cGMP resulting from an inhibition of the phosphodiesterase that hydrolyzes cGMP. Furthermore, this phosphodiesterase is driven by an active G protein in darkness. These results indicate an antagonistic control of the phosphodiesterase by two G proteins, analogous to the Gs/Gi control of adenylyl cyclase. Our findings demonstrate an unusual phototransduction mechanism and at the same time indicate that signaling involving cyclic nucleotides is more elaborate than previously known.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Whole-cell dialysis experiments on dissociated parietal-eye photoreceptors.
Figure 2: Similarity between cGMP-induced and light-induced currents.
Figure 3: Comparison of IBMX-induced and light-induced currents.
Figure 4: Light inhibits the dark cGMP-phosphodiesterase activity in the photoreceptor.
Figure 5: A G protein is involved in the control of the cGMP-phosphodiesterase activity in darkness.
Figure 6: Possible phototransduction schemes for the parietal-eye photoreceptor.

Similar content being viewed by others

References

  1. Stryer, L. Cyclic GMP cascade of vision. Annu. Rev. Neurosci. 9, 87–119 (1986).

    Article  CAS  Google Scholar 

  2. Lagnado, L. & Baylor, D. A. Signal flow in visual transduction. Neuron 8, 995–1002 (1992).

    Article  CAS  Google Scholar 

  3. Pugh, E. N. Jr & Lamb, T. D. Amplification and kinetics of the activation steps in phototransduction. Biochim. Biophys. Acta 1141, 111–149 (1993).

    Article  CAS  Google Scholar 

  4. Yarfitz, S. & Hurley, J. B. Transduction mechanism of vertebrate and invertebrate photoreceptors. J. Biol. Chem. 269, 14329–14332 (1994).

    CAS  Google Scholar 

  5. Yau, K. -W. & Baylor, D. A. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu. Rev. Neurosci. 12, 289–327 (1989).

    Article  CAS  Google Scholar 

  6. Eakin, R. M. in The Third Eye (University of California Press, Berkeley, 1973).

    Google Scholar 

  7. Solessio, E. & Engbretson, G. A. Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards. Nature 364, 442–445 (1993).

    Article  CAS  Google Scholar 

  8. Hardie, R. C. & Minke, B. Phosphoinositide-mediated phototransduction in Drosophila photoreceptors: the role of Ca2+ and trp. Cell Calcium 18, 256–274 (1995).

    Article  CAS  Google Scholar 

  9. Ranganathan, R., Malicki, D. M. & Zuker, C. S. Signal transduction in Drosophila photoreceptor. Annu. Rev. Neurosci. 18, 283–317 (1995).

    Article  CAS  Google Scholar 

  10. Shin, J., Richard, E. A. & Lisman, J. E. Ca2+ is an obligatory intermediate in the excitation cascade of limulus photoreceptors. Neuron 11, 845–855 (1993).

    Article  CAS  Google Scholar 

  11. Finn, J. T., Solessio, E. C. & Yau, K. -W. A cGMP-gated cation channel in depolarizing photoreceptors of the lizard parietal eye. Nature 385, 815–819 (1997).

    Article  CAS  Google Scholar 

  12. Horn, R. & Marty, A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92, 145–159 (1988).

    Article  CAS  Google Scholar 

  13. Koch, K. -W. & Kaupp, U. B. Cyclic GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism. J. Biol. Chem. 260, 6788–6800 (1985).

    CAS  Google Scholar 

  14. Nicol, G. D., Schnetkamp, P. P., Saimi, Y., Cragoe, E. J. Jr & Bownds, M. D. A derivative of amiloride blocks both the light-regulated and cyclic GMP-regulated conductances in rod photoreceptors. J. Gen. Physiol. 90, 651–669 (1987).

    Article  CAS  Google Scholar 

  15. Beavo, J. A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol. Rev. 75, 725–748 (1995).

    Article  CAS  Google Scholar 

  16. Gillespie, P. G. & Beavo, J. A. Inhibition and stimulation of photoreceptor phosphodiesterases by dipyridamole and M&B 22,948. Mol. Pharmacol. 36, 773–781 (1989).

    CAS  Google Scholar 

  17. Gilman, A. G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649 (1987).

    Article  CAS  Google Scholar 

  18. Bigay, J., Deterre, P., Pfister, C. & Chabre, M. Fluoroaluminates activate transducin-GDP by mimicking the gamma-phosphate of GTP in its binding site. FEBS Lett. 191, 181–185 (1985).

    Article  CAS  Google Scholar 

  19. Pugh, E. N. Jr, Lisman, J. & Payne, R. Strange case of the third eye. Nature 364, 389–390 (1993).

    Article  CAS  Google Scholar 

  20. Sunahara, R. K., Dessauer, C. W. & Gilman, A. G. Complexity and diversity of mammalian adenylyl cyclases. Annu. Rev. Pharmacol. Toxicol. 36, 461–480 (1996).

    Article  CAS  Google Scholar 

  21. Ui, M. & Katada, T. Bacterial toxins as probe for receptor-Gi coupling. Adv. Second Messenger Phosphoprotein Res. 24, 63–69 (1990).

    CAS  Google Scholar 

  22. Birnbaumer, L. G proteins in signal transduction. Annu. Rev. Pharmacol. Toxicol. 30, 675–705 (1990).

    Article  CAS  Google Scholar 

  23. Simon, M. I., Strathmann, M. P. & Gautam, N. Diversity of G proteins in signal transduction. Science 252, 802–808 (1991).

    Article  CAS  Google Scholar 

  24. Drewett, J. G. & Garbers, D. L. The family of guanylyl cyclase receptors and their ligands. Endocr. Rev. 15, 135–162 (1994).

    Article  CAS  Google Scholar 

  25. Wedel, B. J. & Garbers, D. L. New insights on the functions of the guanylyl cyclase receptors. FEBS Lett. 410, 29–33 (1997).

    Article  CAS  Google Scholar 

  26. Zhang, J. & Snyder, S. H. Nitric oxide in the nervous system. Annu. Rev. Pharmacol. Toxicol. 35, 213–233 (1995).

    Article  CAS  Google Scholar 

  27. Gudermann, T., Schoneberg, T. & Schultz, G. Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu. Rev. Neurosci. 20, 399–427 (1997).

    Article  CAS  Google Scholar 

  28. Gomez, M. & Nasi, E. Activation of light-dependent K+ channels in ciliary invertebrate photoreceptors involves cGMP but not the IP3/Ca2+ cascade. Neuron 15, 607–618 (1995).

    Article  Google Scholar 

  29. Li, Y., Hanf, R., Otero, A. S., Fischmeister, R. & Szabo, G. Differential effects of pertussis toxin on the muscarinic regulation of Ca2+ and K+ currents in frog cardiac myocytes. J. Gen. Physiol. 104, 941–959 (1994).

    Article  CAS  Google Scholar 

  30. Zong, X. & Lux, H. D. Augmentation of calcium channel currents in response to G protein activation by GTP gamma S in chick sensory neurons. J. Neurosci. 14, 4847–4853 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Roger C. Hardie and Yiannis Koutalos for suggestions about experiments, and Joe Beavo, Jackie D. Corbin, Peter N. Devreotes, Vincent Manganiello, Enrico Nasi, Carol Parent, and W. Joe Thompson for discussions. Robert D. Barber, Peter G. Gillespie, Maria E. Grunwald, Dietmar Krautwurst and Haining Zhong provided comments on the manuscript. We also thank Eric Lasater for his generosity in making this collaboration possible. The L- cis -diltiazem was a gift from Tanabe Seyaku Co. (Osaka, Japan). This work was supported by a grant from the U.S. National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to King-Wai Yau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, WH., Solessio, E. & Yau, KW. An unusual cGMP pathway underlying depolarizing light response of the vertebrate parietal-eye photoreceptor. Nat Neurosci 1, 359–365 (1998). https://doi.org/10.1038/nn0998_359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0998_359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing