Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic dissection of Alzheimer's disease and related dementias: amyloid and its relationship to tau

A Correction to this article was published on 01 December 1998

Abstract

Molecular genetic analysis is revealing the etiologies of Alzheimer's disease (AD) and related dementias. Here we review genetic and molecular biological evidence suggesting that the peptide Aβ42 is central to the etiology of AD. Recent data also suggests that dysfunction in the cytoskeletal protein tau is on the pathway that leads to neurodegeneration and dementia. Tau is produced either indirectly, by Aβ42, or directly, in some forms of frontotemporal dementia by mutations in tau itself. These data support and refine the amyloid cascade hypothesis for AD and suggest that understanding the causes and consquences of tau dysfunction is an important priority for dementia research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The amyloid cascade hypothesis, showing the proposed relationships between Aβ and tau and between Alzheimer's disease and FTDP-17.
Figure 2: The six major tau protein isoforms that are generated by alternative splicing of exons 2, 3 and 10.
Figure 3

Similar content being viewed by others

References

  1. Hardy, J. & Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol. Sci. 12, 383–388 ( 1991).

    Article  CAS  Google Scholar 

  2. Selkoe, D. J. Amyloid β-protein and the genetics of Alzheimer's disease. J. Biol. Chem. 271, 18295–18298 (1996).

    Article  CAS  Google Scholar 

  3. Hardy, J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20, 154–159 (1997).

    Article  CAS  Google Scholar 

  4. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  Google Scholar 

  5. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754– 760 (1995).

    Article  CAS  Google Scholar 

  6. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977 ( 1995).

    Article  CAS  Google Scholar 

  7. Jarrett, J. T. et al. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693– 4697 (1993).

    Article  CAS  Google Scholar 

  8. Citron, M. et al. Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production. Nature 360, 672–674 (1992).

    Article  CAS  Google Scholar 

  9. Cai, X. D. et al. Release of excess amyloid β-protein from a mutant amyloid β-protein precursor. Science 259, 514– 516 (1993).

    Article  CAS  Google Scholar 

  10. Suzuki, N. et al. An increased percentage of long amyloid β-protein secreted by familial amyloid β-protein precursor (β-APP717) mutants. Science 264, 1336–1340 ( 1994).

    Article  CAS  Google Scholar 

  11. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat. Med. 2, 864–870 (1996).

    Article  CAS  Google Scholar 

  12. Duff, K. et al. Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713 (1996).

    Article  CAS  Google Scholar 

  13. Borchelt, D. R. et al. Familial Alzheimer's disease-linked presenilin 1 variants elevate Aβ1-42/1-40 ratio in vitro and in vivo. Neuron 17, 1005 –1013 (1996).

    Article  CAS  Google Scholar 

  14. Citron, M. et al. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat. Med. 3, 67–72 ( 1997).

    Article  CAS  Google Scholar 

  15. Xia, W. et al. Enhanced production and oligomerization of the 42-residue amyloid β-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J. Biol. Chem. 272, 7977–7982 (1997).

    Article  CAS  Google Scholar 

  16. Mehta, N. D. et al. Increased Aβ42(43) from cell lines expressing presenilin 1 mutations. Ann. Neurol. 43, 256–258 (1998).

    Article  CAS  Google Scholar 

  17. Iwatsubo, T. et al. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43). Neuron 13, 45–53 (1994).

    Article  CAS  Google Scholar 

  18. Mann D. M. Amyloid-β protein (Aβ) deposition in chromosome 14-linked Alzheimer's disease: predominance of Aβ42(43). Ann. Neurol. 40, 149– 156 (1996).

    Article  CAS  Google Scholar 

  19. Lemere, C. A. et al. The E280A presenilin 1 Alzheimer mutation produces increased Aβ42 deposition and severe cerebellar pathology. Nat. Med. 2, 1146–1150 (1996).

    Article  CAS  Google Scholar 

  20. Terry, R. D. The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J. Neuropathol. Exp. Neurol. 55, 1023– 1025 (1996).

    Article  CAS  Google Scholar 

  21. Braak, H. et al. Age, neurofibrillary changes, Aβ-amyloid and the onset of Alzheimer's disease. Neurosci. Lett. 210, 87– 90 (1996).

    Article  CAS  Google Scholar 

  22. Irizarry, M. C. et al. Aβ deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J. Neurosci. 17, 7053– 7059 (1997).

    Article  CAS  Google Scholar 

  23. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523– 527 (1995).

    Article  CAS  Google Scholar 

  24. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  CAS  Google Scholar 

  25. Borchelt, D. R. et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19, 939–945 (1997).

    Article  CAS  Google Scholar 

  26. Holcomb, L. et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4, 97–100 ( 1998).

    Article  CAS  Google Scholar 

  27. Perez-Tur, J. et al. A mutation in Alzheimer's disease destroying a splice acceptor site in the presenilin-1 gene. Neuroreport 7, 297– 301 (1995).

    Article  CAS  Google Scholar 

  28. Crook, R. et al. A variant of Alzheimer's disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat. Med. 4, 452–455 (1998).

    Article  CAS  Google Scholar 

  29. Cruz, L. et al. Aggregation and disaggregation of senile plaques in Alzheimer disease. Proc. Natl Acad. Sci. USA 94, 7612– 7616 (1997).

    Article  CAS  Google Scholar 

  30. Kuo, Y. M. et al. Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 271, 4077– 4081 (1996).

    Article  CAS  Google Scholar 

  31. Wild-Bode, C. et al. Intracellular generation and accumulation of amyloid beta-peptide terminating at amino acid 42. J. Biol. Chem. 272, 16085 –16088 (1997).

    Article  CAS  Google Scholar 

  32. Hartmann, T. et al. Distinct sites of intracellular production for Alzheimer's disease Aβ40/42 amyloid peptides. Nat. Med. 3, 1016– 1020 (1997).

    Article  CAS  Google Scholar 

  33. Yang, A. J. et al. Intracellular Aβ1-42 aggregates stimulate the accumulation of stable, insoluble amyloidogenic fragments of the amyloid precursor protein in transfected cells. J. Biol. Chem. 270, 14786– 14792 (1995).

    Article  CAS  Google Scholar 

  34. Roses, A. D. Apolipoprotein E affects the rate of Alzheimer disease expression: β-amyloid burden is a secondary consequence dependent on APOE genotype and duration of disease. J Neuropathol. Exp. Neurol. 53, 429– 437 (1994).

    Article  CAS  Google Scholar 

  35. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921 –923 (1993).

    Article  CAS  Google Scholar 

  36. Roses, A. D. Alzheimer diseases: a model of gene mutations and susceptibility polymorphisms for complex psychiatric diseases. Am. J. Med. Genet. 81, 49– 57 (1998).

    Article  CAS  Google Scholar 

  37. Royston, M. C. et al. Apolipoprotein E epsilon 2 allele promotes longevity and protects patients with Down's syndrome from dementia. Neuroreport 5, 2583–2585 (1994).

    Article  CAS  Google Scholar 

  38. Houlden, H. et al. APOE genotype and Alzheimer's disease. Lancet 342, 737–738 (1993).

    Article  Google Scholar 

  39. Sorbi, S. et al. Epistatic effect of APP717 mutation and apolipoprotein E genotype in familial Alzheimer's disease. Ann. Neurol. 38, 124 –127 (1995).

    Article  CAS  Google Scholar 

  40. Van Broeckhoven, C. et al. APOE genotype does not modulate age of onset in families with chromosome 14 encoded Alzheimer's disease. Neurosci. Lett. 169 , 179–180 (1994).

    Article  CAS  Google Scholar 

  41. Lendon, C. L. et al. E280A PS-1 mutation causes Alzheimer's disease but age of onset is not modified by ApoE alleles. Hum. Mutat. 10, 186– 195 (1997).

    Article  CAS  Google Scholar 

  42. Bales, K. R. et al. Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat. Genet. 17, 263–264 (1997).

    Article  CAS  Google Scholar 

  43. Lambert, J. C. et al. A new polymorphism in the APOE promoter associated with risk of developing Alzheimer's disease. Hum. Mol. Genet. 7, 533–540 (1998).

    Article  CAS  Google Scholar 

  44. Lambert, J. C. et al. Distortion of allelic expression of apolipoprotein E in Alzheimer's disease. Hum. Mol. Genet. 6, 2151– 2154 (1997).

    Article  CAS  Google Scholar 

  45. Artiga, M. J. et al. Allelic polymorphisms in the transcriptional regulatory region of apolipoprotein E gene. FEBS Lett. 421, 105– 108 (1998).

    Article  CAS  Google Scholar 

  46. Bullido, M. J. et al. A polymorphism in the regulatory region of APOE associated with risk for Alzheimer's dementia. Nat. Genet. 18, 69– 71 (1998).

    Article  CAS  Google Scholar 

  47. Andreadis, A., Brown, W. M. & Kosik, K. S. Structure and novel exons of the human tau gene. Biochemistry 31, 10626– 10633 (1992).

    Article  CAS  Google Scholar 

  48. Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. & Crowther, R. A. Multiple isoforms of human microtubule-associated protein tau: sequence and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3, 519– 526 (1989).

    Article  CAS  Google Scholar 

  49. Goedert, M. et al. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383 , 550–553 (1996).

    Article  CAS  Google Scholar 

  50. Poorkaj, P. et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann. Neurol. 43, 815–826 (1998).

    Article  CAS  Google Scholar 

  51. Hutton, M. et al. Coding and 5' splice site mutations in tau associated with inherited dementia (FTDP-17). Nature 393, 702– 705 (1998).

    Article  CAS  Google Scholar 

  52. Spillantini, M. G. et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl Acad. Sci. USA 95, 7737–7741 (1998).

    Article  CAS  Google Scholar 

  53. Spillantini, M. G. et al. Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of Tauopathies. Brain Pathol. 8, 387–402 (1998).

    Article  CAS  Google Scholar 

  54. Reed, L. A. et al. Autosomal dominant dementia with widespread neurofibrillary tangles. Ann. Neurol. 42, 564–572 (1997).

    Article  CAS  Google Scholar 

  55. Foster, N. L. et al. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann. Neurol. 41, 706– 715 (1997).

    Article  CAS  Google Scholar 

  56. Delacourte, A. et al. Vulnerable neuronal subsets in Alzheimer's and Pick's disease are distinguished by their distribution and phosphorylation. Ann. Neurol. 43, 193–204 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Mayo Foundation and by an NIA Program Project Grant and an NINDS Project Grant (M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Hardy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardy, J., Duff, K., Hardy, K. et al. Genetic dissection of Alzheimer's disease and related dementias: amyloid and its relationship to tau. Nat Neurosci 1, 355–358 (1998). https://doi.org/10.1038/1565

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing