Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex


Reduced visual performance under transcranial magnetic stimulation (TMS) of human visual cortex demonstrates suppression whose spatial extent is not directly visible. We created an artificial scotoma (region missing from a visual pattern) to directly visualize the location, size and shape of the TMS-induced suppression by following a large-field, patterned, visual stimulus with a magnetic pulse. The scotoma shifted with coil position according to known topography of visual cortex. Visual suppression resulted in pattern-dependent distortion, and the scotoma was filled in with temporally adjacent stimuli, suggesting spatial and temporal completion mechanisms. Thus, perceptual measurements of TMS-induced suppression may provide information about cortical processing via neuronal connections and temporal interactions of neural signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Locally suppressed region in a large-field patterned stimulus.
Figure 2: Mapping of visual cortex.
Figure 3: Anisotropic suppressed region in oriented patterns.
Figure 4: Compression of the suppressed region in a radial pattern.
Figure 5: Filling in of the suppressed region in time.

Similar content being viewed by others


  1. Barker, A. T., Jalinous, R. & Freeston, I. L. Noninvasive magnetic stimulation of human motor cortex. Lancet 1, 1106–1107 (1985).

    Article  CAS  Google Scholar 

  2. Amassian, V. E. et al. Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr. Clin. Neurophysiol. 74, 458–462 ( 1989).

    Article  CAS  Google Scholar 

  3. Beckers, G. & Hömberg, V. Cerebral visual motion blindness: transitory akinetopia induced by transcranial magnetic stimulation of human area V5. Proc. R. Soc. Lond. B Biol Sci. 249, 173–178 (1992).

    Article  CAS  Google Scholar 

  4. Epstein, C. M., Verson, R. & Zangaladze, A. Magnetic coil suppression of visual perception at an extracalcarine site. J. Clin. Neurophyisiol. 13, 247–252 (1996).

    Article  CAS  Google Scholar 

  5. Meyer, B.U., Diehl, R., Steinmetz, H., Britton, T. C. & Benecke, R. Magnetic stimuli applied over motor and visual cortex: Influence of coil position and field polarity on motor responses, phosphenes, and eye movements. Electroencephalogr. Clin. Neurophysiol. Suppl. 43, 121–134 ( 1991).

    CAS  PubMed  Google Scholar 

  6. Marg, E. & Rudiak, D. Phosphenes induced by magnetic stimulation over the occipital brain: description and probable site of stimulation. Optom. Vis. Sci. 71, 301–311 (1994).

    Article  CAS  Google Scholar 

  7. Kastner, S., Demmer, I. & Ziemann, U. Transient visual field defects induced by transcranial magnetic stimulation over human occipital pole. Exp. Brain Res. 118, 19–26 ( 1998).

    Article  CAS  Google Scholar 

  8. Horton, J. C. & Hoyt, W. F. Quadrantic visual field defects. A hallmark of lesions in extrastriate (V2/V3) cortex. Brain 114, 1703–1718 (1991).

    Article  Google Scholar 

  9. Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  Google Scholar 

  10. DeYoe, E. A. et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 2382 –2386 (1996).

    Article  CAS  Google Scholar 

  11. Jones, J. P. & Palmer, L. A. An evaluation of the two dimensional Gabor filter model of simple receptive fields in cats striate cortex. J. Neurophysiol. 58, 1233–1258 (1987).

    Article  CAS  Google Scholar 

  12. Gilbert, C. D., Hirsch, J. A. & Wiesel, T. N. Lateral interactions in visual cortex. Cold Spring Harb. Symp. Quant. Biol. 55, 663– 677 (1990).

    Article  CAS  Google Scholar 

  13. Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

    Article  CAS  Google Scholar 

  14. Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T. & Norcia, A. M. Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 391, 580–584 (1998).

    Article  CAS  Google Scholar 

  15. Polat, U. & Sagi, D. Lateral interaction between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vision Res. 33, 993–999 (1993).

    Article  CAS  Google Scholar 

  16. Weisstein, N. in Handbook of Sensory Physiology VII/4: Visual Psychophysics (eds. Jameson, D. & Hurvich, L. M.) 233–272 (Springer, Berlin, 1971).

    Google Scholar 

  17. Breitmeyer, B. G. Visual Masking: An Integrative Approach (Oxford Univ. Press, Oxford, 1984).

    Google Scholar 

  18. Amassian, V. E. et al. Unmasking human visual perception with the magnetic coil and its relation to hemispheric asymmetry. Brain Res. 605 , 312–316 (1993).

    Article  CAS  Google Scholar 

  19. Kammer, T. & Nusseck, H. Are recognition deficits following occipital lobe TMS explained by raised detection thresholds? Neuropsychologia 36, 1161–1166 ( 1998).

    Article  CAS  Google Scholar 

  20. Amassian, V. E. et al. The polarity of the induced electric field influences magnetic coil inhibition of human visual cortex: implications for the site of excitation. Electroencephalogr. Clin. Neurophysiol. 93, 21–26 (1994).

    Article  CAS  Google Scholar 

  21. Stensaas, S. S., Eddington, D. K. & Dobelle, W. H. The topography and variability of the primary visual cortex in man. J. Neurosurg. 40, 747– 755 (1974).

    Article  CAS  Google Scholar 

Download references


We thank Y. Ugawa, Y. Terao and R. Hanajima for technical instruction in transcranial magnetic stimulation and M. Konishi, C. Koch, B. Sheth and J. Weber for comments on the manuscript. We also thank I. Fujita and Y. Takahashi for discussions. Supported by Caltech Engineering Research Center NSF grant (#EEC-9402726).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yukiyasu Kamitani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamitani, Y., Shimojo, S. Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex. Nat Neurosci 2, 767–771 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing