Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Influence of experience on orientation maps in cat visual cortex

Abstract

Experience is known to affect the development of ocular dominance maps in visual cortex, but it has remained controversial whether orientation preference maps are similarly affected by limiting visual experience to a single orientation early in life. Here we used optical imaging based on intrinsic signals to show that the visual cortex of kittens reared in a striped environment responded to all orientations, but devoted up to twice as much surface area to the experienced orientation as the orthogonal one. This effect is due to an instructive role of visual experience whereby some neurons shift their orientation preferences toward the experienced orientation. Thus, although cortical orientation maps are remarkably rigid in the sense that orientations that have never been seen by the animal occupy a large portion of the cortical territory, visual experience can nevertheless alter neuronal responses to oriented contours.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iso-orientation maps show an over-representation of the experienced orientation.
Figure 2: Relative representation of orientations in the visual cortex of stripe-reared and normal kittens.
Figure 3: Results of single-neuron recordings in an animal (C16) that had been exposed to stripes of 90°.
Figure 4: Evidence for an instructive role of visual experience.

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Hubel, D. H. & Wiesel, T. N. Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 158, 267–293 (1974).

    Article  CAS  Google Scholar 

  3. Blasdel, G. G. & Salama, G. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585 (1986).

    Article  CAS  Google Scholar 

  4. Bonhoeffer, T. & Grinvald, A. The layout of iso-orientation domains in area 18 of cat visual cortex: Optical imaging reveals a pinwheel-like organization. J. Neurosci. 13, 4157–4180 (1993).

    Article  CAS  Google Scholar 

  5. Hübener, M., Shoham, D., Grinvald, A. & Bonhoeffer, T. Spatial relationships among three columnar systems in cat area 17. J. Neurosci. 17, 9270–9284 (1997).

    Article  Google Scholar 

  6. Wiesel, T. N. & Hubel, D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28, 1029–1040 (1965).

    Article  CAS  Google Scholar 

  7. Blakemore, C. & Van Sluyters, R. C. Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period. J. Physiol. (Lond.) 237, 195–216 (1974).

    Article  CAS  Google Scholar 

  8. Hata, Y. & Stryker, M. P. Control of thalamocortical afferent rearrangement by postsynaptic activity in developing visual cortex. Science 265, 1732–1735 (1994).

    Article  CAS  Google Scholar 

  9. Blakemore, C. & Cooper, G. F. Development of the brain depends on the visual environment. Nature 228, 477–478 (1970).

    Article  CAS  Google Scholar 

  10. Blakemore, C. & Mitchell, D. E. Environmental modification of the visual cortex and the neural basis of learning and memory. Nature 241, 467–468 (1973).

    Article  CAS  Google Scholar 

  11. Stryker, M. P. & Sherk, H. Modification of cortical orientation selectivity in the cat by restricted visual experience: a reexamination. Science 190, 904–906 (1975).

    Article  CAS  Google Scholar 

  12. Blasdel, G. G., Mitchell, D. E., Muir, D. W. & Pettigrew, J. D. A physiological and behavioural study in cats of the effect of early visual experience with contours of a single orientation. J. Physiol. (Lond.) 265, 615–636 (1977).

    Article  CAS  Google Scholar 

  13. Hirsch, H. V. & Spinelli, D. N. Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168, 869–871 (1970).

    Article  CAS  Google Scholar 

  14. Stryker, M. P., Sherk, H., Leventhal, A. G. & Hirsch, H. V. Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours. J. Neurophysiol. 41, 896–909 (1978).

    Article  CAS  Google Scholar 

  15. Freeman, R. D. & Pettigrew, J. D. Alteration of visual cortex from environmental asymmetries. Nature 246, 359–360 (1973).

    Article  CAS  Google Scholar 

  16. Cynader, M. & Mitchell, D. E. Monocular astigmatism effects on kitten visual cortical development. Nature 270, 177–178 (1977).

    Article  CAS  Google Scholar 

  17. Rauschecker, J. P. & Singer, W. Changes in the circuitry of the kitten visual cortex are gated by postsynaptic activity. Nature 280, 58–60 (1979).

    Article  CAS  Google Scholar 

  18. Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., & Wiesel, T. N. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361–364 (1986).

    Article  CAS  Google Scholar 

  19. Bonhoeffer, T. & Grinvald, A. in Brain Mapping: The Methods (Academic, London) 55–97, (1996).

    Google Scholar 

  20. Rauschecker, J. P. & Singer, W. The effects of early visual experience on the cat's visual cortex and their possible explanation by Hebb synapses. J. Physiol. (Lond.) 310, 215–239 (1981).

    Article  CAS  Google Scholar 

  21. Bonds, A. B. in Developmental Neurobiology of Vision (Plenum, New York) 31–41 (1979).

    Book  Google Scholar 

  22. Sengpiel, F., Blakemore, C., Kind, P. C. & Harrad, R. Interocular suppression in the visual cortex of strabismic cats. J. Neurosci. 14, 6855–6871 (1994).

    Article  CAS  Google Scholar 

  23. Swindale, N. V. The development of columnar systems in the mammalian visual cortex. The role of innate and environmental factors. Trends Neurosci. 5, 235–241 (1982).

    Article  Google Scholar 

  24. Blakemore, C. Genetic instructions and developmental plasticity in the kitten's visual cortex. Phil. Trans. R. Soc. Lond. B Biol. Sci. 278, 425–434 (1977).

    Article  CAS  Google Scholar 

  25. Singer, W., Freeman, B. & Rauschecker, J. Restriction of visual experience to a single orientation affects the organization of orientation columns in cat visual cortex. Exp. Brain Res. 41, 199–215 (1981).

    CAS  PubMed  Google Scholar 

  26. Gordon, B. & Presson, J. Orientation deprivation in cat: what produces the abnormal cells? Exp. Brain Res. 46, 144–146 (1982).

    Article  CAS  Google Scholar 

  27. Coleman, P. D., Flood, D. G., Whitehead, M. C. & Emerson, R. C. Spatial sampling by dendritic trees in visual cortex. Brain Res. 214, 1–21 (1981).

    Article  CAS  Google Scholar 

  28. Tieman, S. B. & Hirsch, H. V. Exposure to lines of only one orientation modifies dendritic morphology of cells in the visual cortex of the cat. J. Comp. Neurol. 211, 353–362 (1982).

    Article  CAS  Google Scholar 

  29. Hubel, D. H. & Wiesel, T. N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994–1002 (1963).

    Article  CAS  Google Scholar 

  30. Frégnac, Y. & Imbert, M. Early development of visual cortical cells in normal and dark-reared kittens: relationship between orientation selectivity and ocular dominance. J. Physiol. (Lond.) 278, 27–44 (1978).

    Article  Google Scholar 

  31. Gödecke, I., Kim, D. S., Bonhoeffer, T. & Singer, W. Development of orientation preference maps in area 18 of kitten visual cortex. Eur. J. Neurosci. 9, 1754–1762 (1997).

    Article  Google Scholar 

  32. Crair, M. C., Gillespie, D. C. & Stryker, M. P. The role of visual experience in the development of columns in cat visual cortex. Science 279, 566–570 (1998).

    Article  CAS  Google Scholar 

  33. Gödecke, I. & Bonhoeffer, T. Development of identical orientation maps for two eyes without common visual experience. Nature 379, 251–254 (1996).

    Article  Google Scholar 

  34. Blakemore, C. & Van Sluyters, R. C. Innate and environmental factors in the development of the kitten's visual cortex. J. Physiol. (Lond.) 248, 663–716 (1975).

    Article  CAS  Google Scholar 

  35. Wörgötter, F. & Eysel, U. T. Quantitative determination of orientational and directional components in the response of visual cortical cells to moving stimuli. Biol. Cybern. 57, 349–355 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Gerhard Brändle for help with image analysis and Iris Kehrer and Frank Brinkmann for technical assistance. Imke Gödecke provided data for some of the control animals. Mark Hübener and Martin Korte made comments on a first version of the manuscript. Donald Mitchell gave advice on rearing cats with goggles. This work was supported by the Max-Planck-Gesellschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sengpiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengpiel, F., Stawinski, P. & Bonhoeffer, T. Influence of experience on orientation maps in cat visual cortex. Nat Neurosci 2, 727–732 (1999). https://doi.org/10.1038/11192

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing