Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A sugar transporter as a candidate for the outer hair cell motor

Abstract

Forces developed by cochlear outer hair cells (OHCs) are responsible for the sharp tuning that underlies sensitivity and frequency selectivity in the ear. OHCs exhibit a voltage-dependent motility involving a 'motor' protein embedded in the basolateral membrane. The motor has so far resisted molecular identification. Here we provide evidence that it may be related to a fructose transporter. We show that OHCs are able to transport this sugar selectively and that the sugar alters electrical properties of the OHC motor. These data can be combined into an integrated model of a sugar carrier, that makes the novel prediction, demonstrated here, that such 'neutral' transporters can be voltage dependent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outer hair cell volume change induced by replacement of sugars.
Figure 2: GLUT5 expression in the organ of Corti.
Figure 3: Sugar transport affects charge movement in OHCs.
Figure 4: Time course of extracellular fructose action.
Figure 5: Effect of fructose on capacitance in basolateral membrane patches.
Figure 6: Localization of the capacitance change produced by fructose.
Figure 7: A kinetic scheme for the outer hair cell motor.

Similar content being viewed by others

References

  1. Davis, H. An active process in cochlear mechanics. Hearing Res. 9, 79–90 (1983).

    Article  CAS  Google Scholar 

  2. Russell, I. J., Cody, A. R. & Richardson, G. P. in Cellular Mechanisms in Hearing (eds. Flock, A. & Wersäll, J.) 199–216 (Elsevier, Amsterdam, 1986).

    Google Scholar 

  3. Brownell, W. E., Bader, C. R., Bertrand, D. & De Ribaupierre, Y. Evoked mechanical responses of isolated cochlear hair cells. Science 227, 194–196 ( 1985).

    Article  CAS  Google Scholar 

  4. Ashmore, J. F. A fast motile reponse in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J. Physiol. (Lond.) 388, 323–347 (1987).

    Article  CAS  Google Scholar 

  5. Kachar, B., Brownell, W. E., Altschuler, R. & Fex, J. Electrokinetic shape changes of cochlear outer hair cells. Nature 322, 365–368 ( 1986).

    Article  CAS  Google Scholar 

  6. Holley, M. C. & Ashmore, J. F. On the mechanism of a high frequency force generator in outer hair cells isolated from the guinea pig cochlea. Proc. R. Soc. Lond. B Biol. Sci. 232, 413 –429 (1988).

    Article  CAS  Google Scholar 

  7. Iwasa, K. H., Li, M. & Jia, M. Can membrane proteins drive a cell? Biophys. J. 68, 214s (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalinec, E., Holley, M. C., Iwasa, K. H., Lim, D. J. & Kachar, B. A membrane-based force generation mechanism in auditory sensory cells. Proc. Natl. Acad. Sci. USA 89, 8671–8675 ( 1992).

    Article  CAS  Google Scholar 

  9. Ashmore, J. F. Forward and reverse transduction in the mammalian cochlea. Neurosci. Res. (Suppl.) 12, 39–50 (1990).

    Google Scholar 

  10. Santos-Sacchi, J. Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J. Neurosci. 11, 3096– 3110 (1991).

    Article  CAS  Google Scholar 

  11. Gale, J. E. & Ashmore, J. F. The outer hair cell motor in membrane patches. Pflugers Arch. 434, 267 –271 (1997).

    Article  CAS  Google Scholar 

  12. Knipper, M. et al. Immunological identification of candidate proteins involved in regulating active shape changes of outer hair cells. Hearing Res. 86, 100–110 ( 1995).

    Article  CAS  Google Scholar 

  13. Kalinec, F., Kalinec, G., Negrini, C. & Kachar, B. Immunolocalization of anion exchanger 2α in auditory sensory hair cells. Hearing Res. 110, 141–146 ( 1997).

    Article  CAS  Google Scholar 

  14. Gale, J. E. & Ashmore, J. F. An intrinsic frequency limit to the cochlear amplifier. Nature 389, 63 –66 (1997).

    Article  CAS  Google Scholar 

  15. Huang, G. & Santos-Sacchi, J. Motility voltage sensor of the outer hair cell resides within the lateral plasma membrane. Proc. Natl. Acad. Sci. USA 91, 12268– 12272 (1994).

    Article  CAS  Google Scholar 

  16. Dallos, P. & Evans, B. N. High-frequency motility of outer hair cells and the cochlear amplifier. Science 267, 2006–2009 (1995).

    Article  CAS  Google Scholar 

  17. Nakazawa, K., Spicer, S. S. & Schulte, B. A. Postnatal expression of the facilitated glucose transporter, GLUT 5, in gerbil outer hair cells. Hearing Res. 82 , 93–99 (1995).

    Article  CAS  Google Scholar 

  18. Gould, G. W., Thomas, H. M., Jess, T. J. & Bell, G. I. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry 30, 5139– 5145 (1991).

    Article  CAS  Google Scholar 

  19. Colville, C.A., Seatter, M. J. & Gould, G. W. Analysis of the structural requirements of sugar binding to the liver, brain and insulin-responsive glucose transporters expressed in oocytes. Biochem. J. 294, 753– 760 (1993).

    Article  CAS  Google Scholar 

  20. Gould, G. W. & Holman, D. The glucose transporter family: structure, function and tissue-specific expression. Biochem. J. 295, 329–341 (1993).

    Article  CAS  Google Scholar 

  21. Miyamoto, K. et al. Characterization of the rabbit intestinal fructose transporter (GLUT5). Biochem. J. 303, 877– 883 (1994).

    Article  CAS  Google Scholar 

  22. Iwasa, K. H. Effect of stress on the membrane capacitance of the auditory outer hair cell. Biophys. J. 65, 492–498 (1993).

    Article  CAS  Google Scholar 

  23. Gale, J. E. & Ashmore, J. F. Charge displacement induced by rapid stretch in the basolateral membrane of guinea-pig outer hair cell. Proc. R. Soc. Lond. B Biol. Sci. 255, 243– 249 (1994).

    Article  CAS  Google Scholar 

  24. Huang, G. & Santos-Sacchi, J. Mapping the distribution of the outer hair cell motility voltage sensor by electrical amputation. Biophys. J. 65, 2228–2236 (1993).

    Article  CAS  Google Scholar 

  25. Forge, A. Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell Tissue Res. 265, 473– 483 (1991).

    Article  CAS  Google Scholar 

  26. Souter, M., Nevill, G. & Forge, A. Postnatal development of membrane specialisations of gerbil outer cells. Hearing Res. 91, 43– 62 (1995).

    Article  CAS  Google Scholar 

  27. Gould, G. W. & Bell, G. I. Facilitative glucose transporters: an expanding family. Trends Biochem. Sci. 15, 18–23 (1990).

    Article  CAS  Google Scholar 

  28. Pessino, A. et al. Evidence that functional erythrocyte-type glucose transporters are oligomers. J. Biol. Chem. 266, 20213 –20217 (1991).

    CAS  PubMed  Google Scholar 

  29. Zottola, R. J. et al. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization. Biochemistry 34, 9734– 9747 (1995).

    Article  CAS  Google Scholar 

  30. Eskandari, S. et al. Structural analysis of cloned plasma membrane proteins by freeze-fracture electron microscopy. Proc. Natl. Acad. Sci. USA 95, 11235–11240 ( 1998).

    Article  CAS  Google Scholar 

  31. Iwasa, K. H. A membrane motor model for the fast motility of the outer hair cell. J. Acoust. Soc. Am. 96, 2216–2224 (1994).

    Article  CAS  Google Scholar 

  32. Holley, M. C. A simple in vitro method for raising monoclonal antibodies to cochlear proteins. Tissue Cell 24, 613–624 (1992).

    Article  CAS  Google Scholar 

  33. Carruthers, A. Sugar transport in animal cells: the passive hexose transfer system. Prog. Biophys. Mol. Biol. 43, 33–69 (1984).

    Article  CAS  Google Scholar 

  34. Weiss, T. F. Cellular Biophysics: Transport: Vol. 1 360– 396 (MIT Press, Cambridge, 1996).

    Google Scholar 

  35. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch clamp technique for high resolution current recording from cells and cell free membrane patches. Pflugers Arch. 391, 85–100 ( 1981).

    Article  CAS  Google Scholar 

  36. Fuchs, P. A. & Evans, M. G. Potassium currents in hair cells isolated from the cochlea of the chick. J. Physiol. (Lond.) 429, 529–551 (1990).

    Article  CAS  Google Scholar 

  37. Armstrong, C. M. & Bezanilla, F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J. Gen. Physiol. 63, 533– 552 (1974).

    Article  CAS  Google Scholar 

  38. Neher, E. & Marty, A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 79, 6712–6716 (1982).

    Article  CAS  Google Scholar 

  39. Joshi, C. & Fernandez, J. M. Capacitance measurements: An analysis of the phase detector technique used to study exocytosis and endocytosis. Biophys. J. 53, 885–892 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust. We thank Matthew Holley, Peter Mobbs and Luca Turin for comments on an earlier version of the manuscript. S.O.C. is supported by a George John Livanos Charitable Trust Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Ashmore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Géléoc, G., Casalotti, S., Forge, A. et al. A sugar transporter as a candidate for the outer hair cell motor. Nat Neurosci 2, 713–719 (1999). https://doi.org/10.1038/11174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing