Dopaminergic regulation of cerebral cortical microcirculation

Article metrics


Functional variations in cerebral cortical activity are accompanied by local changes in blood flow, but the mechanisms underlying this physiological coupling are not well understood. Here we report that dopamine, a neurotransmitter normally associated with neuromodulatory actions, may directly affect local cortical blood flow. Using light and electron-microscopic immunocytochemistry, we show that dopaminergic axons innervate the intraparenchymal microvessels. We also provide evidence in an in vitro slice preparation that dopamine produces vasomotor responses in the cortical vasculature. These anatomical and physiological observations reveal a previously unknown source of regulation of the microvasculature by dopamine. The findings may be relevant to the mechanisms underlying changes in blood flow observed in circulatory and neuropsychiatric disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Distribution of close appositions of dopamine-transporter-labeled axons on all blood vessels in a section through cortical layers I-IIIa in area 9.
Figure 2: High-power photographs of dopaminergic terminals associated with small cortical blood vessels.
Figure 3: Correlated light- and electron-microscopic analysis of dopamine terminals associated with the microvasculature.
Figure 4: Catecholaminergic innervation of pial arteries.
Figure 5: DIC videomicroscopic images of cortical microvessels responding to perivascular iontophoretic application of dopamine with +10 to +60 nA current in ferret prefrontal cortical slices.


  1. 1

    Cox, S. B., Woolsey, T. A. & Rovainen, C. M. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J. Cereb. Blood Flow Metab. 13, 899–913 (1993).

  2. 2

    Magistretti, P. J. & Pellerin, L. The cellular bases of functional brain imaging: evidence for astrocyte-neuron metabolic coupling. Neuroscientist 3, 361–365 (1997).

  3. 3

    Lou, H. C., Edvinsson, L. & MacKenzie, E. T. The concept of coupling blood flow to brain function: revision required? Ann. Neurol. 22, 289– 297 (1987).

  4. 4

    Iadecola, C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci. 16, 206– 214 (1993).

  5. 5

    Wahl, M. & Schilling, L. Regulation of cerebral blood flow – a brief review. Acta Neurochir. (Suppl.) 59, 3–10 (1993).

  6. 6

    MacKenzie, E. T. & Scatton, B. Cerebral circulation and metabolic effects of perivascular neurotransmitters. Crit. Rev. Clin. Neurobiol. 2, 357–419 ( 1987).

  7. 7

    Hartman, B. K., Zide, D. & Udenfriend, S. The use of dopamine hydroxylase as a marker for the central noradrenergic nervous system in rat brain. Proc. Natl. Acad. Sci. USA 69, 2722–2726 (1972).

  8. 8

    Raichle, M. E., Hartman, B. K., Eichling, J. O. & Sharpe, L. G. Central noradrenergic regulation of cerebral blood flow and vascular permeability . Proc. Natl. Acad. Sci. USA 72, 3726– 3730 (1975).

  9. 9

    Sato, A. & Sato, Y. Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain. Neurosci. Res. 14, 242–274 ( 1992).

  10. 10

    Vaucher, E. & Hamel, E. Cholinergic basal forebrain neurons project to cortical microvessels in the rat: electron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase . J. Neurosci. 15, 7427– 7441 (1995).

  11. 11

    Reinhard, J. F., Liebmann, J. E., Schlosbery, A. J. & Moskowitz, M. A. Serotonin neurons project to small blood vessels in the brain. Science 206, 85–87 ( 1979).

  12. 12

    Dacey, R. G., Jr., Bassett, J. E. & Takayasu, M. Vasomotor responses of rat intracerebral arterioles to vasoactive intestinal peptide, substance P, neuropeptide Y, and bradykinin . J. Cereb. Blood Flow Metab. 8, 254– 261 (1988).

  13. 13

    Favard, C., Simon, A., Vigny, A. & Nguyen-Legros, J. Ultrastructural evidence for a close relationship between dopamine cell processes and blood capillary walls in Macaca monkey and rat retina. Brain Res. 523, 127–133 (1990).

  14. 14

    Weil-Fugazza, J., Onteniente, B., Audet, G. & Philippe, E. Dopamine as trace amine in the dorsal root ganglia. Neurochem. Res. 18, 965–969 ( 1993).

  15. 15

    Goldman-Rakic, P. S., Lidow, M. S., Smiley, J. F. & Williams, M. S. The anatomy of dopamine in monkey and human prefrontal cortex. J. Neural Transm. (Suppl.) 36, 163– 177 (1992).

  16. 16

    Williams, S. M. & Goldman-Rakic, P. S. Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cereb. Cortex 3, 199– 222 (1993).

  17. 17

    Morrison, J. H., Foote, S. L., O'Connor, D. & Bloom, F. E. Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: dopamine-beta-hydroxylase immunohistochemistry. Brain Res. Bull. 9, 309–319 (1982).

  18. 18

    Williams, G. V. & Goldman-Rakic, P. S. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376, 572–575 (1995).

  19. 19

    Cohen, Z., Ehret, M., Maitre, M. & Hamel, E. Ultrastructural analysis of tryptophan hydroxylase immunoreactive nerve terminals in the rat cerebral cortex and hippocampus: their associations with local blood vessels . Neuroscience 66, 555– 569 (1995).

  20. 20

    Cohen, Z., Molinatti, G. & Hamel, E. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J. Cereb. Blood Flow Metab. 17, 894–904 (1997).

  21. 21

    Shepro, D. & Morel, N. M. L. Pericyte physiology. FASEB J. 7, 1031–1038 ( 1993).

  22. 22

    Haefliger, I. O., Zschauer, A. & Anderson, D. R. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. Invest. Opthalmol. Vis. Sci. 35, 991–997 (1994).

  23. 23

    Sagher, O. et al. Live computerized videomicroscopy of cerebral microvessels in brain slices . J. Cereb. Blood Flow Metab. 13, 676– 682 (1993).

  24. 24

    Farber, N. E. et al. Region-specific and agent-specific dilation of intracerebral microvessels by volatile anesthetics in rat brain slices. Anesthesiology 87, 1191–1198 (1997).

  25. 25

    Cepeda, C., Radisavljevic, Z., Peacock, W., Levine, M. S. & Buchwald, N. A. Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11, 330–341 (1992).

  26. 26

    Geijo-Barrientos, E. & Pastore, C. The effects of dopamine on the subthreshold electrophysiological responses of rat prefrontal cortex neurons in vitro. Eur. J. Neurosci. 7, 358–366 (1995).

  27. 27

    Edvinsson, L., McCulloch, J. & Sharkey, J. Vasomotor responses of cerebral arterioles in situ to putative dopamine receptor agonists. Br. J. Pharmacol. 85, 403– 410 (1985).

  28. 28

    Goldberg, L. I. Dopamine receptors and hypertension. Physiologic and pharmacologic implications. Am. J. Med. 77, 37–44 ( 1984).

  29. 29

    Weinberger, D. R., Berman, K. F. & Illowsky, B. P. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III. A new cohort and evidence for a monoaminergic mechanism. Arch. Gen. Psychiatry 45, 609 –615 (1988).

Download references


We thank Klara Szigeti for preparing tissue for electron microscopy, and David McCormick for providing us with ferret frontal cortex for the physiological experiments. This work was supported by MH44866 and a Pfizer Postdoctoral Fellowship to ECM.

Author information

Correspondence to Patricia S. Goldman-Rakic.

Rights and permissions

Reprints and Permissions

About this article

Further reading