Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A role for NMDA-receptor channels in working memory

Abstract

The NMDA class of glutamate receptors has a critical role in the induction of long-term potentiation (LTP), a synaptic modification that may encode some forms of long-term memory. However, NMDA-receptor antagonists disrupt a variety of mental processes1,2,3,4,5,6 that are not dependent on long-term memory. For example, they interfere with working memory1,6, a short-lasting form of memory that is maintained by neuronal activity7 rather than by synaptic modification. This suggests that there are unknown functions of the NMDA-receptor channel. One hint is that in addition to producing the calcium entry important for LTP induction, NMDA-receptor channels produce voltage-dependent excitatory postsynaptic potentials (EPSPs)8. Here, we use a network model to show that such NMDA-receptor-mediated EPSPs could be critical in maintaining working memory. These results provide a mechanistic framework useful in understanding dopamine-NMDA interactions in working memory and the disruption of working memory in schizophrenia.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Maintenance of working memory by NMDA-receptor-mediated synaptic transmission at recurrent synapses.
Figure 2: Properties of network storage of working memory.

References

  1. 1

    Krystal, J. H. et al. Arch. Gen. Psychiatry 51, 199–214 (1994).

    CAS  Article  Google Scholar 

  2. 2

    Caramanos, Z. & Shapiro, M. L. Behav. Neurosci. 108, 30–43 (1994).

    CAS  Article  Google Scholar 

  3. 3

    Verma, A. & Moghaddam, B. J. Neurosci. 16, 373–379 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Javitt, D. C., Steinschneider, M., Schroeder, C. E. & Arezzo, J. C. Proc. Natl. Acad. Sci. USA 93, 11962–11967 (1996).

    CAS  Article  Google Scholar 

  5. 5

    Flohr, H. Neuropsychologia 13, 1169–1180 ( 1995).

    Article  Google Scholar 

  6. 6

    Adler, C. M., Goldberg, T. E., Malhotra, A. K., Pickar, D. & Breier, A. Biol. Psychiatry 43, 811– 816 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. J. Neurophysiol. 61, 331– 349 (1989).

    CAS  Article  Google Scholar 

  8. 8

    Daw, N. W., Stein, P. S. & Fox, K. Annu Rev Neurosci 16, 207–222 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Amit, D. J., Brunel, N. & Tsodyks, M. V. J. Neuroscience 14, 6435– 6445 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Camperi, M. & Wang, X.-J. J. Computational Neurosci. (in press, 1998).

  11. 11

    Hanse, E. & Gustafsson, B. Neurosci. Res. 20 , 15–25 (1994).

    CAS  Article  Google Scholar 

  12. 12

    Williams, G. V. & Goldman-Rakic, P. S. Nature 376, 572–575 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Cepeda, C., Buchwald, N. A. & Levine, M. S. . Proc. Natl. Acad. Sci. USA 90, 9576–9580 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Olney, J. W. & Farber, N. B. Arch. Gen. Psychiatry 52, 998–1007 (1995).

    CAS  Article  Google Scholar 

  15. 15

    Tsai, G. et al. Arch. Gen. Psychiatry 52, 829–836 (1995).

    CAS  Article  Google Scholar 

  16. 16

    Grunze, H. C. et al. J Neurosci.16, 2034–2043 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Jensen, O. & Lisman, J. E. Learning & Memory 3, 264–278 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Pinsky, P. F. & Rinzel, J. J. Comput. Neurosci. 1, 39–60 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Wang, X. J., Colomb, D. & Rinzel, J. Proc. Natl. Acad. Sci. USA 92, 5577– 5581 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Wang, X. J. & Buzsaki, G. J. Neurosci. 16, 6402–6413 (1996).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Patricia Goldman-Rakic, Amy Arnsten, John Krystal, Charles Yang, Matthew Shapiro, Eve Marder and Larry Abbott for comments on the manuscript and Bita Moghaddam, D. Javitt and R. Greene for helpful discussions. The authors gratefully acknowledge the support of the W.M. Keck Foundation. This work was supported by the National Science Foundation, the Office of Naval Research, the National Alliance for Research on Schizophrenia and Depression, and the Alfred P. Sloan Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John E. Lisman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lisman, J., Fellous, JM. & Wang, XJ. A role for NMDA-receptor channels in working memory. Nat Neurosci 1, 273–275 (1998). https://doi.org/10.1038/1086

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing