
©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.

916 volume 13 | number 8 | August 2010  nature neuroscience

n e w s  a n d  v i e w s

clear whether participants have perfect knowl-
edge of their own uncertainty. Finally, Jazayeri 
and Shadlen1 found that participants’ behav-
ior was consistent with a quadratic loss func-
tion so that the optimal estimate is the mean 
of the posterior distribution. However, other 
combinations of assumed priors,  temporal 
 uncertainty and loss functions might have 
been consistent with their results (Fig. 1).

For the Bayesian modeler, there are three 
unknown functions: the likelihood, prior and 
loss function. This multiplicity of unknowns 
is particularly vexing, as the data only tell us 
the participant’s average response to any given 
stimulus. This stimulus-response function 
might result from more than one Bayesian 
model. For example, larger bias for long dura-
tions results from a likelihood implementing 
scalar variability combined with a quadratic 
loss function, but similar results are obtained if 
the participant assumes variability is constant 
and uses an asymmetrical loss function with 
high cost for overestimation (Fig. 1). Previous 
studies have used a variety of approaches to 
reduce the number of unknowns. For sensory 
experiments, the likelihood function can be 
measured by determining the observer’s abil-
ity to discriminate similar stimuli (for example, 
ref. 10). The prior distribution can be imposed, 
as it is in Jazayeri and Shadlen’s study1, with 
training sessions so that participants have an 
opportunity to learn the prior. It can be mea-
sured from the environment and one can ask 

whether perceptual biases are consistent with 
the participant computing a Bayesian estimate 
using this natural prior (for example, ref. 11). 
Alternatively, experiments can be designed 
to estimate the shape of the prior used by the 
observer12. The loss function can be imposed 
by the experimenter13. Finally, sensory informa-
tion can be removed so that performance can 
only be based on the prior and loss function.

How can the experimenter be assured the 
participant is truly carrying out the Bayesian 
computation, rather than a simpler heuristic 
that has the same net effect? In Jazayeri and 
Shadlen’s experiment1, participants received 
feedback for responses that were sufficiently 
close to the correct duration. Thus, it is rea-
sonable to ask whether the resulting biases 
were learned by effectively computing a lin-
ear regression of produced intervals that led 
to positive feedback as a function of the corre-
sponding measured intervals. A true Bayesian 
computation would imply that the participant 
has knowledge of the likelihood, prior and loss 
function, and can use those elements when 
one of them, such as the context (prior), is 
changed14. One strength of the Jazayeri and 
Shadlen study1 is that observers were naturally 
exposed, in different sessions, to three different 
temporal contexts (ranges of displayed dura-
tions) and these priors were learned effort-
lessly. Other priors can be updated given 
sufficiently convincing feedback, such as the 
default prior knowledge that light comes 

from above our head15. It is also surprisingly 
easy for participants to form nearly optimal 
strategies in pointing tasks to a visual target 
with arbitrary,  experiment-imposed payoffs 
and penalties13. The ability of human partici-
pants to readily adapt to changes in context 
or loss function constitutes strong evidence 
for Bayesian decision theories of perceptual-
motor performance14.
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An abundance of grid cells
Several different classes of neurons are involved in the mapping of allocentric space. 
Two such classes, place cells and head-direction cells, have been found throughout the 
medial temporal lobe memory areas, including the presubiculum, parasubiculum and 
 entorhinal cortex. Place cells represent spatial locations and features of the environment 
and head-direction cells are sensitive to the orientation of a rat’s head with respect to the 
 environment. A third major class of cells, known as grid cells, was recently identified in the 
medial  entorhinal cortex (MEC). Grid cells, which encode abstract  spatial structure, are of 
great interest because, unlike place cells, their response properties are independent of any 
 particular environment, suggesting that they are involved in path integration mechanisms. 
On page 987, Boccara and colleagues report that grid cells are not unique to the MEC, where 
they were first found, but are also abundant in the pre- and parasubiculum.

Boccara and colleagues recorded from neurons throughout the presubiculum, 
 parasubiculum and MEC of rats during food-motivated running in an open environment. 
They found grid cells in all three of these areas, interspersed with head-direction cells 
and border cells (another recently reported cell class that encodes the boundaries of a 
local environment). The relative proportions of each of these cell classes were comparable 
across presubiculum, parasubiculum and the deep layers of MEC. However, the rotational 
symmetry of the grid pattern and the theta modulation of presubiculum neurons were 
significantly weaker than those in MEC.

The pre- and parasubiculum project strongly to MEC, raising the possibility that they may be the sources of grid-cell properties in 
MEC neurons. However, it is also possible that grid properties are generated locally in each of these regions. Although the existence 
of grid cells in multiple areas does not definitively identify the mechanism for generating these unique response properties, it further 
specifies the neural network that supports the mapping of allocentric space. Hannah Bayer
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