Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human pitch perception is reflected in the timing of stimulus-related cortical activity

Abstract

'Pitch' refers to a sound's subjective highness or lowness, as distinct from 'frequency,' which refers to a sound's physical structure. In speech, music and other natural contexts, complex tones are often perceived with a single pitch. Using whole-head magnetoencephalography (MEG) and stimuli that dissociate pitch from frequency, we studied cortical dynamics in normal individuals who extracted different pitches from the same tone complexes. Whereas all subjects showed similar spatial distributions in the magnitude of their brain responses to the stimuli, subjects who heard different pitches exhibited contrasting temporal patterns of brain activity in their right but not their left hemispheres. These data demonstrate a specific relationship between pitch perception and the timing (phase) of dynamic patterns of cortical activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complex-tone stimuli with opposite directions of frequency and pitch change.
Figure 2: Power and spatial distribution of the aSSR in each of the four conditions (grand average across subjects).
Figure 3: Auditory steady state response phase is modulated by frequency and by pitch.
Figure 4: Auditory steady state response magnitude modulations. Data are from the same subject shown in Fig. 3.
Figure 5: Passing channels exhibiting phase and magnitude flipping.
Figure 6: Spatial organization of passing channels exhibiting phase and magnitude flipping.

Similar content being viewed by others

References

  1. Licklider, J. C. R. A duplex theory of pitch perception. Experientia 7, 128–134 (1951).

    Article  CAS  Google Scholar 

  2. Terhardt, E. Pitch, consonance, and harmony. J. Acoust. Soc. Am. 55, 1061–1069 (1974).

    Article  CAS  Google Scholar 

  3. Shamma, S. & Klein, D. The case of the missing pitch templates: how harmonic templates emerge in the early auditory system. J. Acoust. Soc. Am. 107, 2631–2644 (2000).

    Article  CAS  Google Scholar 

  4. Greenberg, S., Marsh, J. T., Brown, W. S. & Smith, J. C. Neural temporal coding of low pitch. I. Human frequency following responses to complex tones. Hearing Res. 25, 91–114 (1987).

    Article  CAS  Google Scholar 

  5. Goldstein, J. An optimum processor theory for the central formation of pitch of complex tones. J. Acoust. Soc. Am. 54, 1496–1516 (1973).

    Article  CAS  Google Scholar 

  6. Cohen, M., Grossberg, S. & Wyse, L. A spectral network model of pitch perception. J. Acoust. Soc. Am. 98, 862–879 (1995).

    Article  CAS  Google Scholar 

  7. Meddis, R. & Hewitt, J. Virtual pitch and phase sensitivity of a computer model of the auditory periphery I: pitch identification. J. Acoust. Soc. Am. 89, 2866–2882 (1991).

    Article  Google Scholar 

  8. Cariani, P. A. & Delgutte, B. Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J. Neurophysiol. 76, 1698–1716 (1996).

    Article  CAS  Google Scholar 

  9. Lyon, R. & Shamma, S. in Auditory Computation (eds. Hawkins, H. L., McMullen, T. A., Popper, A. N. & Fay, R. R.) 221–270 (Springer, New York, 1996).

    Book  Google Scholar 

  10. Galambos, R., Makeig, S. & Talmachoff, P. J. A 40-Hz auditory potential recorded from the human scalp. Proc. Natl. Acad. Sci. USA 78, 2463–2647 (1981).

    Article  Google Scholar 

  11. Hari, R., Hämäläinen, M. & Joutsiniemi, S.-L. Neuromagnetic steady-state responses to auditory stimuli. J. Acoust. Soc. Am. 86, 1033–1039 (1989).

    Article  CAS  Google Scholar 

  12. Ross, B., Borgmann, C., Draganova, R., Roberts, L. & Pantev, C. A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. J. Acoust. Soc. Am. 108, 679–691 (2000).

    Article  CAS  Google Scholar 

  13. Pantev, C., Roberts, L. E., Elbert, T., Ross, B. & Wienbruch, C. Tonotopic organization of the sources of human auditory steady-state responses. Hearing Res. 101, 62–74 (1996).

    Article  CAS  Google Scholar 

  14. Gutschalk, A. et al. Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin. Neurophysiol. 110, 856–868 (1999).

    Article  CAS  Google Scholar 

  15. Patel, A. D. & Balaban, E. Temporal patterns of human cortical activity reflect tone sequence structure. Nature 404, 80–84 (2000).

    Article  CAS  Google Scholar 

  16. John, M. S. & Picton, T. W. Human auditory steady-state responses to amplitude-modulated tones: phase and latency measurements. Hearing Res. 141, 57–79 (2000).

    Article  CAS  Google Scholar 

  17. Langner, G. & Schreiner, C. Periodicity coding in the inferior colliculus of the cat. J. Neurophysiol. 60, 1805–1822 (1988).

    Article  Google Scholar 

  18. Greenberg, S., Poeppel, D. & Roberts, T. in Psychophysical and Physiological Advances in Hearing (eds. Palmer, A., Summerfield, Q., Rees, A. & Meddis, R.) 293–300 (Whurr, London, 1998).

    Google Scholar 

  19. Makeig, S., Jung, T-P., Bell, A. J., Ghahremani, D. & Sejnowski, T. J. Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. USA 94, 10979–10984 (1997).

    Article  CAS  Google Scholar 

  20. Sokal, R. R. & Rohlf, F. J. Biometry 3rd edn. (W. H. Freeman, New York, 1995).

    Google Scholar 

  21. Pantev, C., Elbert, T., Ross, B., Eulitz, C. & Terhardt, E. Binaural fusion and the representation of virtual pitch in the human auditory cortex. Hearing Res. 100, 164–170 (1996).

    Article  CAS  Google Scholar 

  22. Langner, G., Sams, M., Heil, P. & Schulze, H. Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography. J. Comp. Physiol. A 181, 655–676 (1997).

    Article  Google Scholar 

  23. Griffiths, T. D., Büchel, C., Frackowiak, S. J. & Patterson, R. D. Analysis of temporal structure in sound by the human brain. Nat. Neurosci. 1, 422–427 (1998).

    Article  CAS  Google Scholar 

  24. Zatorre, R. Pitch perception of complex tones and human temporal lobe function. J. Acoust. Soc. Am. 84, 566–572 (1988).

    Article  CAS  Google Scholar 

  25. Johnsrude, I. S., Penhune, V. B. & Zatorre, R. Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123, 155–163 (2000).

    Article  Google Scholar 

  26. Scott, S. K., Blank, C. C., Rosen, S. & Wise, R. J. S. Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123, 2400–2406 (2000).

    Article  Google Scholar 

  27. Wetzel, W., Ohl, F. W., Wagner, T. & Scheich, H. Right auditory cortex lesion in Mongolian gerbils impairs discrimination of rising and falling frequency-modulated tones. Neurosci. Lett. 252, 115–118 (1998).

    Article  CAS  Google Scholar 

  28. Tallal, P., Merzenich, M. M., Miller, S. & Jenkins, W. Language learning impairments: integrating basic science, technology, and remediation. Exp. Brain Res. 123, 210–219 (1998).

    Article  CAS  Google Scholar 

  29. Galbraith, G. C. Two-channel brain-stem frequency-following responses to pure tone and missing fundamental stimuli. Electroencephalogr. Clin. Neurophysiol. 92, 321–330 (1994).

    Article  CAS  Google Scholar 

  30. Griffiths, T. D., Uppenkamp, S., Johnsrude, I., Josephs, O. & Patterson, R. D. Encoding of the temporal regularity of sound in the human brainstem. Nat. Neurosci. 4, 633–637 (2001).

    Article  CAS  Google Scholar 

  31. Siegel, S. & Castellan, N. J. Jr. Nonparametric Statistics for the Behavioral Sciences (McGraw Hill, New York, 1988).

    Google Scholar 

Download references

Acknowledgements

We thank L. Kurelowech for technical assistance and Y. Chen for comments. This research was supported by Neurosciences Research Foundation as part of its research program on Music and the Brain at The Neurosciences Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aniruddh D. Patel or Evan Balaban.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, A., Balaban, E. Human pitch perception is reflected in the timing of stimulus-related cortical activity. Nat Neurosci 4, 839–844 (2001). https://doi.org/10.1038/90557

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90557

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing