Abstract
We describe a form of nonlinear decomposition that is well-suited for efficient encoding of natural signals. Signals are initially decomposed using a bank of linear filters. Each filter response is then rectified and divided by a weighted sum of rectified responses of neighboring filters. We show that this decomposition, with parameters optimized for the statistics of a generic ensemble of natural images or sounds, provides a good characterization of the nonlinear response properties of typical neurons in primary visual cortex or auditory nerve, respectively. These results suggest that nonlinear response properties of sensory neurons are not an accident of biological implementation, but have an important functional role.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
Normalization by valence and motivational intensity in the sensorimotor cortices (PMd, M1, and S1)
Scientific Reports Open Access 20 December 2021
-
Primary visual cortex straightens natural video trajectories
Nature Communications Open Access 13 October 2021
-
Neuronal variability reflects probabilistic inference tuned to natural image statistics
Nature Communications Open Access 15 June 2021
Access options
Subscribe to Journal
Get full journal access for 1 year
$59.00
only $4.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.







References
Attneave, F. Some informational aspects of visual perception. Psych. Rev. 61,183–193 (1954).
Barlow, H. B. in Sensory Communication (ed. Rosenblith, W. A.) 217–234 (MIT Press, Cambridge, Massachusetts, 1961).
Simoncelli, E. & Olshausen, B. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).
Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).
Bell, A. J. & Sejnowski, T. J. The 'independent components' of natural scenes are edge filters. Vision Res. 37, 3327–3338 (1997).
van Hateren, J. H. & van der Schaaf, A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 265, 359–366 (1998).
Bell, A. J. & Sejnowski, T. J. Learning the higher-order structure of a natural sound. Network: Computation in Neural Systems 7, 261–266 (1996).
Geisler, D. From Sound to Synapse: Physiology of the Mammalian Ear (Oxford Univ. Press, New York, 1998).
Shapley, R. & Enroth-Cugell, C. Visual adaptation and retinal gain control. Prog. Retin. Res. 3, 263–346 (1984).
Carandini, M., Heeger, D. J. & Movshon, J. A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).
Javel, E., Geisler, D. & Ravindran, A. Two-tone suppression in auditory nerve of the cat: rate-intensity and temporal analyses. J. Acoust. Soc. Am. 63, 1093–1104 (1978).
Knierim, J. J. & Van Essen, D. C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67, 961–980 (1992).
DeAngelis, G. C., Freeman, R. D. & Ohzawa, I. The organization of suppression in receptive fields of neurons in the cat's visual cortex. J. Neurophysiol. 68, 144–163 (1994).
Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J. & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492–496 (1995).
Levitt, J. B. & Lund, J. S. Contrast dependence of contextual effects in primate visual cortex. Nature 387, 73–76 (1997).
Rose, J. E., Anderson, D. J. & Brugge, J. F. Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey. J. Neurophysiol. 34, 685–699 (1971).
Sceniak, M. P., Ringach, D. L., Hawken, M. J. & Shapley, R. Contrast's effect on spatial summation by macaque V1 neurons. Nat. Neurosci. 8, 733–739 (1999).
Kapadia, M. K., Westheimer, G. & Gilbert, C. D. Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc. Natl. Acad. Sci. USA 21, 12073–12078 (1999).
Wainwright, M. J., Simoncelli, E. P. & Willsky, A. S. Random cascades on wavelet trees and their use in modeling and analyzing natural imagery. Applied and Computational Harmonic Analysis (in press).
Heeger, D. J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–198 (1992).
Geisler, W. S. & Albrecht, D. G. Cortical neurons: isolation of contrast gain control. Vision Res. 8, 1409–1410 (1992).
Skottun, B. C., Freeman, R. D., Sclar, G., Ohzawa, I. & Freeman, R. D. The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. J. Neurophysiol. 57, 773–786.
Bonds, A. B. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis. Neurosci. 2, 41–55 (1989).
Cavanaugh, J. R. Properties of the Receptive Field Surround in Macaque Primary Visual Cortex. Thesis, Center for Neural Science, New York Univ. (2000).
Simoncelli, E. P. & Schwartz, O. in Advances in Neural Information Processing Systems vol. 11 (eds. Kearns, M. S., Solla, S. A. & Cohn, D. A.) 153–159 (MIT Press, Cambridge, Massachusetts, 1999).
Geisler, W. S., Perry, J. S., Super, B. J. & Gallogly, D. P. Edge co-occurance in natural images predicts contour grouping performance. Vision Res. 41, 711–724 (2001).
Sigman, M., Cecchi, G. A., Gilbert, C. D. & Magnasco, M. O. On a common circle: natural scenes and Gestalt rules. Proc. Natl. Acad. Sci. USA 98, 1935–1940 (2001).
Lyon, R. F. in The Mechanics and Biophysics of Hearing (ed. Dallos, P. et al.) 395–420 (Springer, Berlin, 1990).
Wang, K. & Shamma, S. Self-normalization and noise-robustness in early auditory representations. IEEE Trans. Speech Audio Proc. 2, 421–435 (1994).
Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).
Borg-Graham, L. J., Monier, C. & Frénac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).
Hirsch, J. A., Alonso, J.-M., Reid, R. C. & Martinez, L. M. Synaptic integration in striate cortical simple cells. J. Neurosci. 18, 9517–9528 (1998).
Anderson, J., Carandini, M. & Ferster, D. Orientation tuning of input conductance, excitation, and inhibition in cat primary cortex. J. Neurophysiol. 84, 909–926 (2000).
Victor, J. D. The dynamics of the cat retinal X cell centre. J. Physiol. (Lond.) 386, 219–246 (1987).
Ruderman, D. L. & Bialek, W. Statistics of natural images: scaling in the woods. Phys. Rev. Letters 73, 814–817 (1994).
Zhao, H. B. & Santos-Sacchi, J. Auditory collusion and a coupled couple of outer hair cells. Nature 399, 359–362 (1999).
Maffei, L. & Fiorentini, A. The unresponsive regions of visual cortical receptive fields. Vision Res. 16, 1131–1139 (1976).
Nelson, J. I. & Frost, B. J. Intracortical facilitation among co-oriented, coaxially aligned simple cells in cat striate cortex. Exp. Brain Res. 61, 54–61 (1985).
Gilbert, C. D. & Wiesel, T. N. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 30, 1689–1701 (1990).
Delgutte, B. in Auditory Computation (eds. Hawkins, H. & McMullen, T.) 157–220 (Springer, Berlin, 1996).
Field, D. J., Hayes, A. & Hess, R. F. Contour integration by the human visual system: evidence for a local “association field.” Vision Res. 33, 173–193 (1993).
Foley, J. M. Human luminance pattern mechanisms: masking experiments require a new model. J. Opt. Soc. Am. A 11, 1710–1719 (1994).
Graham, N. & Sutter, A. Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision. Vision Res. 40, 2737–2761 (2000).
Rieke, F., Bodnar, D. A. & Bialek, W. Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proc. R. Soc. Lond. B Biol. Sci. 262, 259–265 (1995).
Barlow, H. B. & Foldiak, P. in The Computing Neuron (eds. Durbin, R., Miall, C. & Mitchinson, G.) 54–72 (Addison-Wellesley, New York, 1989).
Wainwright, M. J., Schwartz, O. & Simoncelli, E. P. in Probabilistic Models of the Brain: Perception and Neural Function (eds. Rao, R., Olshausen, B. & Lewicki, M., MIT Press, Cambridge, Massachusetts, 2001, in press).
Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000).
Nirenberg, S., Carcieri, S. M., Jacobs, A. L. & Latham, P. E. Retinal ganglion cells act largely as independent encoders. Nature 411, 698–701 (2001).
Slaney, M. An efficient implementation of the Patterson and Holdworth auditory filter bank. Apple Technical Report 35, 1993.
Simoncelli, E. P., Freeman, W. T., Adelson, E. H. & Heeger, D. J. Shiftable multi-scale transforms. IEEE Trans. Info. Theory 38, 587–607 (1992).
Acknowledgements
We thank J. Cavanaugh, W. Bair, and J.A. Movshon for providing us with physiological data.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schwartz, O., Simoncelli, E. Natural signal statistics and sensory gain control. Nat Neurosci 4, 819–825 (2001). https://doi.org/10.1038/90526
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/90526
Further reading
-
Blind Image Quality Assessment for Multiple Distortion Image
Circuits, Systems, and Signal Processing (2022)
-
Primary visual cortex straightens natural video trajectories
Nature Communications (2021)
-
Neural tuning and representational geometry
Nature Reviews Neuroscience (2021)
-
Neuronal variability reflects probabilistic inference tuned to natural image statistics
Nature Communications (2021)
-
Normalization by valence and motivational intensity in the sensorimotor cortices (PMd, M1, and S1)
Scientific Reports (2021)