Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuronal mechanisms of selectivity for object features revealed by blocking inhibition in inferotemporal cortex

Abstract

The inferotemporal cortex (area TE) of monkeys, a higher station of the visual information stream for object recognition, contains neurons selective for particular object features. Little is known about how and where this selectivity is generated. We show that blockade of inhibition mediated by γ-aminobutyric acid (GABA) markedly altered the selectivity of TE neurons by augmenting their responses to some stimuli but not to others. The effects were observed for particular groups of stimuli related to the originally effective stimuli or those that did not originally excite the neurons but activated nearby neurons. Intrinsic neuronal interactions within area TE thus determine the final characteristic of their selectivity, and GABAergic inhibition contributes to this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimulus specific effects of blocking GABAergic inhibition on visual responses of a TE neuron.
Figure 2: Change in stimulus selectivity of a TE neuron following bicuculline application was correlated with normal selectivity of a nearby neuron.
Figure 3: Stimulus features disinhibited by bicuculline were related to the originally effective stimulus features in specific parameter domains.
Figure 4: Population data for changes in stimulus selectivity for specific feature dimensions or for components of a stimulus.
Figure 5: Correlation between the change in stimulus selectivity induced by blocking GABAergic inhibition and the selectivity of nearby TE neurons under normal conditions.
Figure 6: Response correlation between neurons.

Similar content being viewed by others

References

  1. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 ( 1991).

    Article  CAS  Google Scholar 

  2. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  3. Gross, C. G. in Handbook of Sensory Physiology Vol. VII, Part 3B (ed. Jung, R.) 451–482 (Springer, Berlin, 1972).

    Google Scholar 

  4. Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996).

    Article  CAS  Google Scholar 

  5. Logothetis, N. K. & Sheinberg, D. L. Visual object recognition. Annu. Rev. Neurosci. 19, 577 –621 (1996).

    Article  CAS  Google Scholar 

  6. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture of the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 ( 1962).

    Article  CAS  Google Scholar 

  7. Vidyasagar, T. R., Pei, X. & Volgushev, M. Multiple mechanisms underlying the orientation selectivity of visual cortical neurons. Trends Neurosci. 19, 272–277 (1996).

    Article  CAS  Google Scholar 

  8. Sompolinsky, H. & Shapley, R. New perspectives on the mechanisms for orientation selectivity. Curr. Opin. Neurobiol. 7, 514–522 ( 1997).

    Article  CAS  Google Scholar 

  9. Sato, H., Katsuyama, N., Tamura, H., Hata, Y. & Tsumoto, T. Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. J. Physiol. (Lond.) 494, 757–771 (1996).

    Article  CAS  Google Scholar 

  10. Crook, J. M., Kisvárday, Z. F. & Eysel, U. T. Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques. Eur. J. Neurosci. 10, 2056–2075 (1998).

    Article  CAS  Google Scholar 

  11. Tsumoto, T., Eckart, W. & Creutzfeldt, O. D. Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition. Exp. Brain. Res. 34, 351–363 ( 1979).

    Article  CAS  Google Scholar 

  12. Sillito, A. M., Kemp, J. A., Milson, J. A. & Berardi, N. A re-evaluation of the mechanisms underlying simple cell orientation selectivity . Brain Res. 194, 517–520 (1980).

    Article  CAS  Google Scholar 

  13. Hendry, S. H. C., Schwark, H. D., Jones, E. G. & Yan, J. Number and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J. Neurosci. 7, 1503–1519 (1987).

    Article  CAS  Google Scholar 

  14. Tanigawa, H., Fujita, I., Kato, M. & Ojima, H. Distribution, morphology, and γ-aminobutyric acid immunoreactivity of horizontally projecting neurons in the macaque inferior temporal cortex. J. Comp. Neurol. 401, 129–143 ( 1998).

    Article  CAS  Google Scholar 

  15. Fujita, I., Tanaka, K., Ito, M. & Cheng, K. Columns for visual features of objects in monkey inferotemporal cortex. Nature 360, 342–346 (1992).

    Article  Google Scholar 

  16. Wang, G., Tanaka, K. & Tanifuji, M. Optical imaging of functional organization in the monkey inferotemporal cortex. Science 272, 1665 –1668 (1996).

    Article  CAS  Google Scholar 

  17. Fujita, I. & Fujita, T. Intrinsic connections in the macaque inferior temporal cortex. J. Comp. Neurol. 368, 467–486 (1996).

    Article  CAS  Google Scholar 

  18. Tanaka, K., Saito, H. –A., Fukada, Y. & Moriya, M. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J. Neurophysiol. 66, 170– 189 (1991).

    Article  CAS  Google Scholar 

  19. Kobatake, E. & Tanaka, K. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex . J. Neurophysiol. 71, 856– 867 (1994).

    Article  CAS  Google Scholar 

  20. Sato, H., Katsuyama, N., Tamura, H., Hata, Y. & Tsumoto, T. Broad-tuned chromatic inputs to color-selective neurons in the monkey visual cortex. J. Neurophysiol. 72, 163–168 ( 1994).

    Article  CAS  Google Scholar 

  21. Sato, H., Katsuyama, N., Tamura, H., Hata, Y. & Tsumoto, T. Mechanisms underlying direction selectivity of neurons in the primary visual cortex of the macaque. J. Neurophysiol. 74, 1382–1394 (1995).

    Article  CAS  Google Scholar 

  22. Gochin, P., Miller, E. K., Gross, C. G. & Gerstein, G. L. Functional interactions among neurons in inferior temporal cortex. Exp. Brain Res. 84, 505–516 (1991).

    Article  CAS  Google Scholar 

  23. Gawne, T. & Richmond, B. How independent are the messages carried by adjacent inferior temporal cortical neurons? J. Neurosci. 13, 2758–2771 ( 1993).

    Article  CAS  Google Scholar 

  24. Li, B.-M., Mei, Z.-T. & Kubota, K. Multibarreled glass-coated tungsten microelectrode for both neuronal activity recording and iontophoresis in monkeys. Neurosci. Res. 8, 214–219 (1990).

    Article  CAS  Google Scholar 

  25. Merrill., E. & Ainsworth, A. Glass-coated platinum-plated tungsten microelectrodes. Med. Biol. Eng. 10, 662 –672 (1972).

    Article  CAS  Google Scholar 

  26. Fujita, I. & Konishi, M. The role of GABAergic inhibition in processing of interaural time difference in the owl's auditory system. J. Neurosci. 11, 722–739 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hiroshi Tamura for comments on the manuscript. This work was supported by a CREST grant from the Japan Science and Technology Corporation, and grants from the Japanese Ministry of Education, Science, Sports and Culture. In the earlier stages of this work, Y.W. was supported by a fellowship from the Uehara Memorial Foundation, and Y.M. by a fellowship from the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Fujita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Fujita, I. & Murayama, Y. Neuronal mechanisms of selectivity for object features revealed by blocking inhibition in inferotemporal cortex. Nat Neurosci 3, 807–813 (2000). https://doi.org/10.1038/77712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing