Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calretinin modifies presynaptic calcium signaling in frog saccular hair cells

Abstract

To determine whether the concentrations of calcium-binding proteins present in some neurons and sensory cells are sufficient to influence presynaptic calcium signaling, we studied the predominant calcium-binding protein in a class of sensory hair cells in the frog ear. Based on antibody affinity and molecular weight, we identified this protein as calretinin. We measured its cytoplasmic concentration to be 1.2 mM, sufficient to bind 6 mM Ca2+. Calcium signaling was altered when the diffusible cytoplasmic components were replaced by an intracellular solution lacking any fast calcium buffer, and was restored by the addition of 1.2 mM exogenous calretinin to the intracellular solution. We conclude that calretinin, when present at millimolar concentration, can serve as a diffusionally mobile calcium buffer/transporter capable of regulating calcium signaling over nanometer distances at presynaptic sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antibody labeling in sacculus and cerebellum.
Figure 2: Western blots of proteins from cerebellum and sacculus.
Figure 3: The calretinin content of individual hair cells.
Figure 4: Exogenous calretinin mimics the native Ca2+ buffer in suppressing the KCa current.

Similar content being viewed by others

References

  1. Baimbridge, K. G., Celio, M. R. & Rogers, J. H. Calcium-binding proteins in the nervous system. Trends Neurosci. 15, 303–308 (1992).

    Article  CAS  Google Scholar 

  2. Billing-Marczak, K. & Kuznicki J. Calretinin—sensor or buffer—function still unclear. Pol. J. Pharmacol. 51, 173–178 (1999).

    CAS  PubMed  Google Scholar 

  3. Lephart, E. D. & Watson, M. A. Maternal separation: hypothalamic-preoptic area and hippocampal calbindin-D28K and calretinin in male and female infantile rats. Neurosci. Lett. 267, 41– 44 (1999).

    Article  CAS  Google Scholar 

  4. Airaksinen, M. S., Thoenen, H. & Meyer, M. Vulnerability of midbrain dopaminergic neurons in calbindin-D28k-deficient mice: lack of evidence for a neuroprotective role of endogenous calbindin in MPTP-treated and weaver mice. Eur. J. Neurosci. 9, 120–127 (1997).

    Article  CAS  Google Scholar 

  5. Kuznicki J., Isaacs, K. R. & Jacobowitz, D. M. The expression of calretinin in transfected PC12 cells provides no protection against Ca2+-overload or trophic factor deprivation. Biochim. Biophys. Acta 1313, 194–200 (1996).

    Article  Google Scholar 

  6. Rogers, J. H. Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J. Cell Biol. 105, 1343– 1353 (1987).

    Article  CAS  Google Scholar 

  7. Roberts, W. M. Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J. Neurosci. 14, 3246– 3262 (1994).

    Article  CAS  Google Scholar 

  8. Chabbert, C. H. Heterogeneity of hair cells in the bullfrog sacculus. Pflugers Arch. 435, 82–90 ( 1997).

    Article  CAS  Google Scholar 

  9. Sabatini, B. L. & Regehr, W.G . Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384 , 170–172 (1996).

    Article  CAS  Google Scholar 

  10. Roberts, W. M., Jacobs, R. A. & Hudspeth, A. J. Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J. Neurosci. 10, 3664– 3684 (1990).

    Article  CAS  Google Scholar 

  11. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).

    Article  CAS  Google Scholar 

  12. Lenzi, D., Runyeon, J. W., Crum, J., Ellisman, M. H. & Roberts, W. M. Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J. Neurosci. 19, 119–132 (1999).

    Article  CAS  Google Scholar 

  13. Wu, Y.-C., Tucker, T. & Fettiplace, R. A theoretical study of calcium microdomains in turtle hair cells. Biophys. J. 71, 2256– 2275 (1996).

    Article  CAS  Google Scholar 

  14. Naraghi, M. & Neher, E. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci. 17, 6961–6973 (1997).

    Article  CAS  Google Scholar 

  15. Adler, E. M., Augustine, G. J., Duffy, S. N. & Charlton, M. P. Alien calcium chelators attenuate neurotransmitter release at the squid giant synapse J. Neurosci. 11, 1496– 1507 (1991).

    Article  CAS  Google Scholar 

  16. Roberts, W. M. Spatial calcium buffering in frog saccular hair cells. Nature 363, 74–76 (1993).

    Article  CAS  Google Scholar 

  17. Ouanounou, A. et al. Accumulation and extrusion of permeant Ca2+ chelators in attenuation of synaptic transmission at hippocampal CA1 neurons . Neuroscience 75, 99–109 (1996).

    Article  CAS  Google Scholar 

  18. Hall, J. D., Betarbet, S. & Jaramillo, F. Endogenous buffers limit the spread of free calcium in hair cells. Biophys. J. 73, 1243– 1252 (1997).

    Article  CAS  Google Scholar 

  19. Ohana, O. & Sakmann, B. Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers. J. Physiol. (Lond.) 513, 135– 148 (1998).

    Article  CAS  Google Scholar 

  20. Ricci, A. J., Wu, Y.-C. & Fettiplace, R. The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. J. Neurosci. 18, 8261–8277 (1998).

    Article  CAS  Google Scholar 

  21. Moffat, A. J. M. & Capranica, R. R. Auditory sensitivity of the saccule in the American toad (Bufo americanus) J. Comp Physiol. A 105, 1–8 (1976).

    Article  Google Scholar 

  22. Oberholtzer, J. C., Buettger, C., Summers, M. C. & Matschinsky, F. M. The 28-kDa calbindin-D is a major calcium-binding protein in the basilar papilla of the chick. Proc. Natl. Acad. Sci. USA 85, 3387–3390 (1988).

    Article  CAS  Google Scholar 

  23. Tucker, T. R. & Fettiplace, R. Monitoring calcium in turtle hair cells with a calcium-activated potassium channel. J. Physiol. (Lond.) 494, 613–626 ( 1996).

    Article  CAS  Google Scholar 

  24. Pinol, M. R. et al. Poly- and monoclonal antibodies against recombinant rat brain calbindin D-28K were produced to map its selective distribution in the central nervous system. J. Neurochem. 54, 1827– 1833 (1990).

    Article  CAS  Google Scholar 

  25. Gona, A. G., Pendurthi, T. K., Al-Rabiai, S., Gona, O. & Christakos, S. Immunocytochemical localization and immunological characterization of vitamin D-dependent calcium-binding protein in the bullfrog cerebellum. Brain Behav. Evol. 29, 176–183 (1986).

    Article  CAS  Google Scholar 

  26. Celio, M. R. et al. Monoclonal antibodies directed against the calcium binding protein Calbindin D-28k. Cell Calcium 11, 599–602 (1990).

    Article  CAS  Google Scholar 

  27. Armstrong, C. E. & Roberts, W. M. Electrical properties of frog saccular hair cells: distortion by enzymatic dissociation . J. Neurosci. 18, 2962– 2973 (1998).

    Article  CAS  Google Scholar 

  28. Schwaller, B., Durussel, I., Jermann, D, Herrmann, B. & Cox, J. A. Comparison of the Ca2+-binding properties of human recombinant calretinin-22k and calretinin. J. Biol. Chem. 272, 29663–29671 ( 1997).

    Article  CAS  Google Scholar 

  29. Stevens, J. & Rogers, J. H. Chick calretinin: purification, composition, and metal binding activity of native and recombinant forms. Protein Expression Purification 9, 171– 181 (1997).

    Article  CAS  Google Scholar 

  30. Dong, W.-J., Rosenfeld, S. S., Wang, C.-K., Gordon, A. M. & Cheung, H. C. Kinetic studies of calcium binding to the regulatory site of troponin C from cardiac muscle. J. Biol. Chem. 271, 688–694 ( 1996).

    Article  CAS  Google Scholar 

  31. Winsky, L. & Kuznicki, J. Antibody recognition of calcium-binding proteins depends on their calcium-binding status. J. Neurochem. 66, 764–771 ( 1996).

    Article  CAS  Google Scholar 

  32. Lumpkin, E. A. & Hudspeth, A. J. Detection of Ca2+ entry through mechanosensitive channels localizes the site of mechanoelectrical transduction in hair cells. Proc. Natl. Acad. Sci. USA 92, 10297–10301 (1995).

    Article  CAS  Google Scholar 

  33. Gillespie, P. G. & Gillespie, K. H. Improved electrophoresis and transfer of picogram amounts of protein with hemoglobin . Anal. Biochem. 246, 239– 245 (1997).

    Article  CAS  Google Scholar 

  34. Shepherd, G. M. G., Barres, B. A. & Corey, D. P. Bundle blot purification and initial protein characterization of hair cell stereocilia. Proc. Natl. Acad. Sci. USA 86, 4973–4977 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Celio for providing antibodies and recombinant protein, L. Hansen, P. Gillespie and D. Rivers and for technical advice and D. Lenzi for commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Edmonds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edmonds, B., Reyes, R., Schwaller, B. et al. Calretinin modifies presynaptic calcium signaling in frog saccular hair cells. Nat Neurosci 3, 786–790 (2000). https://doi.org/10.1038/77687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing