Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Retinotopy and color sensitivity in human visual cortical area V8

Abstract

Prior studies suggest the presence of a color-selective area in the inferior occipital-temporal region of human visual cortex. It has been proposed that this human area is homologous to macaque area V4, which is arguably color selective, but this has never been tested directly. To test this model, we compared the location of the human color-selective region to the retinotopic area boundaries in the same subjects, using functional magnetic resonance imaging (fMRI), cortical flattening and retinotopic mapping techniques. The human color-selective region did not match the location of area V4 (neither its dorsal nor ventral subdivisions), as extrapolated from macaque maps. Instead this region coincides with a new retinotopic area that we call 'V8', which includes a distinct representation of the fovea and both upper and lower visual fields. We also tested the response to stimuli that produce color afterimages and found that these stimuli, like real colors, caused preferential activation of V8 but not V4.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Topography of color-selective activity in human visual cortex.
Figure 2: Retinotopic features of area V8 by fMRI mapping.
Figure 3: Detailed retinotopy of the polar angle representation, from the same hemisphere shown in Fig. 2a.
Figure 4: Comparison of the polar angle retinotopy in human visual cortex, relative to that reported in macaque monkeys.
Figure 5: The time course of V8 activity is related to the perception of color afterimages.
Figure 6: The perception of color afterimages produces relatively higher activation in cortical area V8, compared with other cortical areas.

References

  1. Cornsweet, T.N. Visual Perception (Academic Press, New York, 1970).

    Google Scholar 

  2. Judd, D.B. & Wyszecki, G. Color in Business, Science, & Industry 3rd edn 388 (Wiley, New York, 1975).

    Google Scholar 

  3. Dow, B.M. Functional classes of cells and their laminar distribution in monkey visual cortex. J. Neurophysiol. 37, 927–946 (1974).

    Article  CAS  Google Scholar 

  4. Livingstone, M.S. & Hubel, D.H. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 309–356 (1984).

    Article  CAS  Google Scholar 

  5. Tootell, R.B.H., Silverman, M.S., Hamilton, S.L., De Valois, R.L. & Switkes, E. Functional anatomy of macaque striate cortex: III. Color J. Neurosci. 8, 1569–1593 (1988).

    Article  CAS  Google Scholar 

  6. Ts'o, D.Y., Frostig, R.D., Lieke, E.E. & Grinvald, A. Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249, 417–420 (1990).

    Article  CAS  Google Scholar 

  7. Lennie, P., Krauskopf, J. & Sclar, G. Chromatic machanisms in striate cortex of macaque. J. Neurosci. 10, 649–669 ( 1990).

    Article  CAS  Google Scholar 

  8. Leventhal, A.G., Thompson, K.G., Liu, D., Zhou, Y. & Ault, S.J. Concommitant sensitivity to orientation, direction and color of cells in layers 2, 3 and 4 of monkey striate cortex. J. Neurosci. 15, 1808–1818 (1995).

    Article  CAS  Google Scholar 

  9. Hubel, D.H. & Livingstone, M.S. Segregation of form, color and stereopsis in primate area 18. J. Neurosci. 7, 3378–3415 (1987).

    Article  CAS  Google Scholar 

  10. Tootell, R.B.H. & Hamilton, S.L. Functional anatomy of the second cortical visual area (V2) in the macaque. J. Neurosci. 9, 2620–2644 (1989).

    Article  CAS  Google Scholar 

  11. Gegenfurtner, K.R., Kiper, D.C. & Fenstemaker, S.B. Processing of color, form and motion in macaque area V2. Vis. Neurosci. 13, 161– 172 (1996).

    Article  CAS  Google Scholar 

  12. Zeki, S.M. Colour coding in rhesus monkey prestriate cortex. Brain Res. 27, 422–427 (1973).

    Article  Google Scholar 

  13. Zeki, S.M. Colour coding in the superior temporal sulcus of rhesus monkey visual cortex. Proc. R. Soc. Lond. B 197, 195– 223 (1977).

    Article  CAS  Google Scholar 

  14. Zeki, S. Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex . J. Physiol. (Lond.) 277, 273– 290 (1978).

    Article  CAS  Google Scholar 

  15. Zeki, S. The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc. R. Soc. Lond. B 217, 449–470 (1983).

    Article  CAS  Google Scholar 

  16. Schein, S.J., Marrocco, R.T. & de Monasterio, F.M. Is there a high concentration of color-selective cells in area V4 of monkey visual cortex? J. Neurophysiol. 47, 193–213 (1982).

    Article  CAS  Google Scholar 

  17. Heywood, C.A., Gadotti, A. & Cowey, A. Cortical area V4 and its role in the perception of color. J. Neurosci. 12, 4056–4065 (1992).

    Article  CAS  Google Scholar 

  18. Heywood, C.A., Gaffan, D. & Cowey, A. Cerebral achromatopsia in monkeys. Eur. J. Neurosci. 7, 1064–1073 (1995).

    Article  CAS  Google Scholar 

  19. Cowey, A. & Heywood, C.A. There's more to colour than meets the eye. Behav. Brain Res. 71, 89 –100 (1995).

    Article  CAS  Google Scholar 

  20. Lueck, C.J. et al. The colour centre in the cerebral cortex of man. Nature 340, 386–389 (1989).

    Article  CAS  Google Scholar 

  21. Zeki, S. et al. A direct demonstration of functional specialization in human visual cortex. J. Neurosci. 11, 641–649 (1991).

    Article  CAS  Google Scholar 

  22. McKeefry, D.J. & Zeki, S. The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120, 2229–2242 (1997).

    Article  Google Scholar 

  23. Pearlman, A.L., Birch, J. & Meadows, J.C. Cerebral color blindness: An acquired defect in hue discrimination. Ann. Neurol. 5, 253 –261 (1979).

    Article  CAS  Google Scholar 

  24. Damasio, A., Yamada, T., Damasio, H., Corbett, J. & McKee, J. Central achromatopsia: Behavioral, anatomic, and physiologic aspects. Neurology 30, 1064– 1071 (1980).

    Article  CAS  Google Scholar 

  25. Zeki, S. A century of cerebral achromatopsia. Brain 113, 1721– 1777 (1990).

    Article  Google Scholar 

  26. Tootell, R.B.H. et al. Functional analsis of V3A and related areas in human visual cortex. J. Neurosci. 17, 7076–7078 (1997).

    Article  Google Scholar 

  27. Engel, S., Zhang, X. & Wandell, B. Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature 388, 68– 71 (1997).

    Article  CAS  Google Scholar 

  28. Kennard, C., Lawden, M., Morland, A.B. & Ruddock, K.H. Colour identification and colour constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical lesions. Proc. R. Soc. Lond. B 260, 169–175 ( 1995).

    Article  CAS  Google Scholar 

  29. Sakai, K. et al. Functional mapping of the human colour centre with echo-planar magnetic resonance imaging. Proc. R. Soc. Lond. B 261, 89–98 (1995).

    Article  CAS  Google Scholar 

  30. Kleinschmidt, A., Lee, B.B., Requardt, M. & Frahm, J. Functional mapping of color processing by magnetic resonance imaging of responses to selective P- and M-pathway stimulation. Exp. Brain Res. 110 , 279–288 (1996).

    Article  CAS  Google Scholar 

  31. DeYoe, E.A. et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 2382– 2386 (1996).

    Article  CAS  Google Scholar 

  32. Sereno, M.I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889 –893 (1995).

    Article  CAS  Google Scholar 

  33. Tootell, R.B.H., Dale, A.M., Sereno, M.I. & Malach, R. New images from human visual cortex. Trends Neurosci. 19, 481–489 (1996).

    Article  CAS  Google Scholar 

  34. Galletti, C. Fattori, P., Battaglini, P.P., Shipp, S. & Zeki, S. Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur. J. Neurosci. 8, 30–52 (1996).

    Article  CAS  Google Scholar 

  35. Boussaoud, D., Desimone, R. & Ungerleider, L.G. Visual topography of area TEO in the macaque. J. Comp. Neurol. 306, 554–575 (1991).

    Article  CAS  Google Scholar 

  36. Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  Google Scholar 

  37. Zeki, S. Are areas TEO and PIT of monkey visual cortex wholly distinct from the fourth visual complex (V4 complex)? Proc. R. Soc. Lond. B 263, 1539–1544 (1996).

    Article  CAS  Google Scholar 

  38. Maguire, W.M. & Baizer, J.S. Visuotopic organization of the prelunate gyrus in rhesus monkey. J. Neurosci. 7, 1690–1704 (1984).

    Article  Google Scholar 

  39. Van Essen, D.C., Maunsell, J.H. & Bixby J.L. The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization. J. Comp. Neurol. 199, 293–326 (1981).

    Article  CAS  Google Scholar 

  40. Tootell, R.B.H. et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375, 139–141 (1995).

    Article  CAS  Google Scholar 

  41. Tootell, R.B.H. et al. Functional analysis of primary visual cortex (V1) in humans. Proc. Natl. Acad. Sci. USA 95, 811– 817 (1998).

    Article  CAS  Google Scholar 

  42. Craik, K.J.W. Origin of visual afterimages. Nature 145, 512 (1940).

    Article  Google Scholar 

  43. Brindley, G.S. Two new properties of foveal afterimages and a photochemical hypothesis to explain them. J. Physiol. 164, 168–179 (1962).

    Article  CAS  Google Scholar 

  44. Schiller, P.H. & Dolan, R.P. Visual aftereffects and the consequences of visual system lesions on their perception in the rhesus monkey. Vis. Neurosci. 11, 643–665 (1994).

    Article  CAS  Google Scholar 

  45. Jameson, D., Hurvich, L.M. & Varner, F.D. Receptoral and postreceptoral processes in recovery from chromatic adaptation. Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).

    Article  CAS  Google Scholar 

  46. Tootell, R.B.H. & Taylor, J.B. Anatomical evidence for MT and additional cortical visual areas in humans. Cereb. Cortex 5, 39–55 (1995).

    Article  CAS  Google Scholar 

  47. Tootell, R.B.H. et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15, 3215–3230 (1995).

    Article  CAS  Google Scholar 

  48. Jacobs, G.H. & Deegan, J.F. Spectral sensitivity of macaque monkeys measured with ERG flicker photometry. Vis. Neurosci. 14, 921–928 ( 1997).

    Article  CAS  Google Scholar 

  49. DeYoe, E.A., Felleman, D.J., Van Essen, D.C. & McClendon, E. Multiple processing streams in occipitotemporal visual cortex. Nature 371, 151–154 (1994).

    Article  CAS  Google Scholar 

  50. Engel, S.A., Glover, G.H. & Wandell, B.A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Human Frontiers Science Foundation and NEI EY07980 to R.B.H.T., NEI EY09258 to P.C. and Swiss Fonds National de la Recherche Scientifique to N.H. We thank Terry Campbell and Mary Foley for scanning and participation in these experiments, Robert Savoy, Ken Kwong, Bruce Fischl and Kevin Hall for advice, Tommy Vaughan for coil design and manufacture and Martin Sereno for modifying pilot stimuli. Wim Vanduffel, Ekkehardt Kustermann and Irene Tracy also helped in preliminary versions of this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouchine Hadjikhani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hadjikhani, N., Liu, A., Dale, A. et al. Retinotopy and color sensitivity in human visual cortical area V8. Nat Neurosci 1, 235–241 (1998). https://doi.org/10.1038/681

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing