Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Independence of perceptual and sensorimotor predictions in the size–weight illusion

Abstract

The smaller of two equally weighted objects is judged to be heavier when lifted. Here we disproved a leading hypothesis that this size–weight illusion is caused by a mismatch between predicted and actual sensory feedback. We showed that when subjects repeatedly lifted equally heavy large and small objects in alternation, they learned to scale their fingertip forces precisely for the true object weights and thus exhibited accurate sensorimotor prediction. The size–weight illusion nevertheless persisted, suggesting that the illusion can be caused by high-level cognitive and perceptual factors and indicating that the sensorimotor system can operate independently of the cognitive/perceptual system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Size–weight stimuli.
Figure 2: Fingertip force records.
Figure 3: Averaged lift parameters.

Similar content being viewed by others

References

  1. Charpentier, A. Analyse experimentale quelques elements de la sensation de poids [Experimental study of some aspects of weight perception]. Arch. Physiol. Normales Pathologiques 3, 122–135 (1891).

    Google Scholar 

  2. Murray, D. J., Ellis, R. R., Bandomir, C. A. & Ross, H. E. Charpentier (1891) on the size-weight illusion. Percept. Psychophys. 61, 1681–1685 (1999).

    CAS  PubMed  Google Scholar 

  3. Flourney, T. De l'influence de la perception visuelle des corps sur leur poids apparent [The influence of visual perception on the apparent weight of objects]. L'Année Psychologique 1, 198–208 (1894).

    Google Scholar 

  4. Nyssen, R. & Bourdon, J. Contribution to the study of the size-weight illusion by the method of P. Koseleff. Acta Psychol. 11, 467–474 (1955).

    Google Scholar 

  5. Seashore, C. E. Some psychological statistics. 2. The material weight illusion. Univ. Iowa Studies Psychol. 2, 36–46 (1899).

    Google Scholar 

  6. Wolfe, H. K. Some effects of size on judgements of weight. Psychol. Rev. 5, 25–54 (1898).

    Google Scholar 

  7. Ellis, R. R. & Lederman, S. J. The role of haptic versus visual volume cues in the size-weight illusion. Percept. Psychophys. 53, 315–324 (1993).

    CAS  PubMed  Google Scholar 

  8. Ross, H. E. When is a weight not illusory? Q. J. Exp. Psychol. 21, 346–355 (1969).

    CAS  PubMed  Google Scholar 

  9. Davis, C. M. & Roberts, W. Lifting movements in the size-weight illusion. Percept. Psychophys. 20, 33–36 (1976).

    Google Scholar 

  10. Granit, R. Constant errors in the execution and appreciation of movement. Brain 95, 451–460 (1972).

    CAS  PubMed  Google Scholar 

  11. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    CAS  PubMed  Google Scholar 

  12. Wolpert, D. M. Computational approaches to motor control. Trends Cog. Sci. 1, 209–216 (1997).

    CAS  Google Scholar 

  13. Blakemore, S.-J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation. Nat. Neurosci. 1, 635–640 (1998).

    CAS  PubMed  Google Scholar 

  14. Jordan, M. I. & Rumelhart, D. E. Forward models: supervised learning with a distal teacher. Cogn. Sci. 16, 307–354 (1992).

    Google Scholar 

  15. Von Holst, E. Relations between the central nervous system and the peripheral organs. Br. J. Anim. Behav. 2, 89–94 (1954).

    Google Scholar 

  16. Sperry, R. W. Neural basis of spontaneous optokinetic responses produced by visual inversion. J. Comp. Physiol. Psychol. 43, 482–489 (1950).

    CAS  PubMed  Google Scholar 

  17. Johansson, R. S. & Westling, G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp. Brain Res. 56, 550–564 (1984).

    CAS  PubMed  Google Scholar 

  18. Johansson, R. S. & Westling, G. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp. Brain Res. 71, 59–71 (1988).

    CAS  PubMed  Google Scholar 

  19. Westling, G. & Johansson, R. S. Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp. Brain Res. 66, 128–140 (1987).

    CAS  PubMed  Google Scholar 

  20. Johansson, R. S. & Cole, K. J. Grasp stability during manipulative actions. Can. J. Physiol. Pharmacol. 72, 511–524 (1994).

    CAS  PubMed  Google Scholar 

  21. Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. Visual size cues in the programming of manipulative forces during precision grip. Exp. Brain Res. 83, 477–482 (1991).

    CAS  PubMed  Google Scholar 

  22. Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. The integration of haptically acquired size information in the programming of precision grip. Exp. Brain Res. 83, 483–488 (1991).

    CAS  PubMed  Google Scholar 

  23. Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. The integration of sensory information during the programming of precision grip: comments on the contribution of size cues. Exp. Brain Res. 85, 226–229 (1991).

    CAS  PubMed  Google Scholar 

  24. Jenmalm, P. & Johansson, R. S. Visual and somatosensory information about object shape control manipulation fingertip forces. J. Neurosci. 17, 4486–4499 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jenmalm, P., Goodwin, A. W. & Johansson, R. S. Control of grasp stability when humans lift objects with different surface curvatures. J. Neurophysiol. 79, 1643–1652 (1998).

    CAS  PubMed  Google Scholar 

  26. Johansson, R. S., Backlin, J. L. & Burstedt, M. K. O. Control of grasp stability during pronation and supination movements. Exp. Brain Res. 128, 20–30 (1999).

    CAS  PubMed  Google Scholar 

  27. Wing, A. M. & Lederman, S. J. Anticipating load torques produced by voluntary movements. J. Exp. Psychol. Hum. Percept. Perform. 24, 1571–1581 (1998).

    CAS  PubMed  Google Scholar 

  28. Gordon, A. M., Westling, G., Cole, K. J. & Johansson, R. S. Memory representations underlying motor commands used during manipulation of common and novel objects. J. Neurophysiol. 69, 1789–1796 (1993).

    CAS  PubMed  Google Scholar 

  29. Goodale, M. A. et al. Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr. Biol. 4, 604–610 (1994).

    CAS  PubMed  Google Scholar 

  30. Goodale, M. A., Milner, A. D., Jakobson, L. S. & Carey, D. P. A neurological dissociation between perceiving objects and grasping them. Nature 349, 154–156 (1991).

    CAS  PubMed  Google Scholar 

  31. Milner, A. D. & Goodale, M. A. The Visual Brain in Action (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  32. Flanagan, J. R. & Wing, A. M. Modulation of grip force with load force during point-to-point arm movements. Exp. Brain Res. 95, 131–143 (1993).

    CAS  PubMed  Google Scholar 

  33. Kinoshita, H., Bäckström, L., Flanagan, J. R. & Johansson, R. S. Planar torque effects on grip force during precision grip. J. Neurophysiol. 78, 1619–1630 (1997).

    CAS  PubMed  Google Scholar 

  34. Flanagan, J. R., Burstedt, M. K. O. & Johansson, R. S. The control of fingertip forces in multidigit manipulation. J. Neurophysiol. 81, 1706–1717 (1999).

    CAS  PubMed  Google Scholar 

  35. Goodwin, A. W., Jenmalm, P. & Johansson, R. S. Control of grip force when tilting objects: effect of curvature of grasped surfaces and of applied tangential torque. J. Neurosci. 18, 10724–10734 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Amazeen, E. L. The effects of volume on perceived heaviness by dynamic touch: With and without vision. Ecolog. Psychol. 9, 245–263 (1997).

    Google Scholar 

  37. Amazeen, E. L. & Turvey, M. T. Weight perception and the haptic size-weight illusion are functions of the inertia tensor. J. Exp. Psychol. Hum. Percept. Perform. 22, 213–232 (1996).

    CAS  PubMed  Google Scholar 

  38. Zwislocki, J. J. & Goodman, D. A. Absolute scaling of sensory magnitudes: a validation. Percept. Psychophys. 28, 28–38 (1980).

    CAS  PubMed  Google Scholar 

  39. Flanagan, J. R. & Wing, A. M. The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J. Neurosci. 17, 1519–1528 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Miall, R. C. & Wolpert, D. M. Forward models for physiological motor control. Neural Networks 9, 1265–1279 (1996).

    PubMed  Google Scholar 

  41. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999).

    CAS  PubMed  Google Scholar 

  42. Ellis, R. R. & Lederman, S. J. The “golf-ball” illusion: Evidence for top-down processing in weight perception. Perception 27, 193–202 (1998).

    CAS  PubMed  Google Scholar 

  43. Brenner, E. & Smeets, J. B. J. Size illusions influence how we lift but not how we grasp an object. Exp. Brain Res. 111, 473–476 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Johansson and S. Lederman for comments on the manuscript. This research was supported by the Natural Sciences and Engineering Research Council of Canada and the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Randall Flanagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flanagan, J., Beltzner, M. Independence of perceptual and sensorimotor predictions in the size–weight illusion. Nat Neurosci 3, 737–741 (2000). https://doi.org/10.1038/76701

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76701

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing