Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia


We designed a protocol distinguishing between automatic and intentional motor reactions to changes in target location triggered at movement onset. In response to target jumps, but not to a similar change cued by a color switch, normal subjects often could not avoid automatically correcting fast aiming movements. This suggests that an ‘automatic pilot’ relying on spatial vision drives fast corrective arm movements that can escape intentional control. In a patient with a bilateral posterior parietal cortex (PPC) lesion, motor corrections could only be slow and deliberate. We propose that ‘on-line’ control is the most specific function of the PPC and that optic ataxia could result from a disruption of automatic hand guidance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Corrections made as a function of instruction and stimulus.
Figure 2: Distribution of all movement durations in experiment 1 (to be compared to the occurrence of corrections to target 2; Fig. 1b).
Figure 3: Specific disruption of automatic corrections following a bilateral parietal lesion.
Figure 4: Distribution of all movement durations in experiment 3 (to be compared to the occurrence of corrections to target 2; Fig. 3).
Figure 5: The lesion of patient I.G.


  1. 1

    Desmurget, M., Pelisson, D., Rossetti, Y. & Prablanc, C. From eye to hand: planning goal-directed movements. Neurosci. Biobehav. Rev. 22, 761–788 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Desmurget, M. et al. Integrated control of hand transport and orientation during prehension movements. Exp. Brain Res. 110, 265–278 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Desmurget, M. et al. Postural and synergic control for three-dimensional movements of reaching and grasping. J. Neurophysiol. 74, 905–910 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Paulignan, Y., MacKenzie, C. L., Marteniuk, R. G. & Jeannerod, M. Selective perturbation of visual input during prehension movements. 1. The effect of changing object position. Exp. Brain Res. 83, 502–512 (1991).

    CAS  Article  Google Scholar 

  5. 5

    Goodale, M. A., Pélisson, D. & Prablanc, C. Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320, 748–750 (1986).

    CAS  Article  Google Scholar 

  6. 6

    Komilis, E., Pelisson, D. & Prablanc, C. Error processing in pointing at randomly feedback-induced double-step stimuli. J. Motor Behav. 25, 299–308 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Li, W. & Matin, L. Saccadic suppression of displacement: separate influences of saccade size and of target retinal eccentricity. Vision Res. 37, 1779–1797 (1997).

    CAS  Article  Google Scholar 

  8. 8

    Pélisson, D., Prablanc, C., Goodale, M. A. & Jeannerod, M. Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double step stimulus. Exp. Brain Res. 62, 303–311 (1986).

    Article  Google Scholar 

  9. 9

    Prablanc, C. & Martin, O. Automatic control during hand reaching at undetected two-dimensional target displacements. J. Neurophysiol. 67, 455–469 (1992).

    CAS  Article  Google Scholar 

  10. 10

    Della Salla, S., Marchetti, C. & Spinnler, H. in Handbook of Neuropsychology Vol. 9 (eds. Boller, F. & Grafman, J.) 233–252 (Elsevier, Amsterdam, 1994).

    Google Scholar 

  11. 11

    Riddoch, M. J., Edwards, M. G., Humphreys, G. W., West, R. & Heafield, T. Manual interference in anarchic hand syndrome: evidence that visual affordances direct action. Cognit. Neuropsychol. 15, 645–684 (1998).

    CAS  Article  Google Scholar 

  12. 12

    Jennings, J. R., Van der Molen, M. W., Brock, K. & Somsen, R. J. M. On the synchrony of stopping motor responses and delaying heartbeats. J. Exp. Psychol. Hum. Percept. Perform. 18, 422–436 (1992).

    CAS  Article  Google Scholar 

  13. 13

    De Jong, R., Coles, M. G. & Logan, G. D. Strategies and mechanisms in nonselective and selective inhibitory motor control. J. Exp. Psychol. Hum. Percept. Perform. 21, 498–511 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Lhermitte, F. Human autonomy and the frontal lobes. Ann. Neurol. 19, 326–343 (1986).

    CAS  Article  Google Scholar 

  15. 15

    Riddoch, J., Humphreys, G. W. & Edwards, M. G. in Attention and Performance XVIII (eds. Monsell, S. & Driver, J.) (MIT Press, Cambridge, Massachusetts, in press).

  16. 16

    Andersen, R. A., Snyder, L. H., Bradley, D. C. & Xing, J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20, 303–330 (1997).

    CAS  Article  Google Scholar 

  17. 17

    McKay, W. A. Properties of reach-related neuronal activity in cortical area 7a. J. Neurophysiol. 67, 1331–1345 (1992).

    Google Scholar 

  18. 18

    Rushworth, M. F. S., Johansen-Berg, H. & Young, S. A. Parietal cortex and spatial-postural transformation during arm movements. J. Neurophysiol. 79, 478–482 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Grafton, S. T., Mazziotta, J. C., Woods, R. P. & Phelps, M. E. Human functional anatomy of visually guided finger movements. Brain 115, 565–587 (1992).

    Article  Google Scholar 

  20. 20

    Slater-Hammel, A. T. Reliability, accuracy, and refractoriness of a transit reaction. Res. Q. 31, 217–228 (1960).

    Google Scholar 

  21. 21

    Logan, G. D. in Attention and Performance IX (eds. Long, J. & Baddeley, A. D.) 205–222 (Erlbaum, Hillsdale, New Jersey, 1981).

    Google Scholar 

  22. 22

    Logan, G. D. in Inhibitory Processes in Attention, Memory, and Language (eds. Dagenbach, D. & Carr, T. H.) 214–249 (Academic, San Diego, 1994).

    Google Scholar 

  23. 23

    Vighetto, A. Etude neuropsychologique et psychophysique de l'ataxie optique. Thèse, Univ. Claude Bernard Lyon I (1980).

  24. 24

    Jeannerod, M. Mechanisms of visuo-motor coordination: a study in normals and brain-damaged subjects. Neuropsychologia 24, 41–78 (1986).

    CAS  Article  Google Scholar 

  25. 25

    Perenin, M.-T. & Vighetto, A. Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111, 643–674 (1988).

    Article  Google Scholar 

  26. 26

    Milner, A. D., Paulignan, Y., Dijkerman, H. C., Michel, F. & Jeannerod, M. A paradoxical improvement of misreaching in optic ataxia: new evidence for two separate neural systems for visual localization. Proc. R. Soc. Lond. B 266, 2225–2229 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Rossetti, Y., Pisella, L. & Pelisson, D. Eye blindness and hand sight: temporal aspects of visuo-motor processing. Vis. Cognit. (in press).

  28. 28

    Castiello, U., Paulignan, Y. & Jeannerod, M. Temporal dissociation of motor responses and subjective awareness. A study in normal subjects. Brain 114, 2639–2655 (1991).

    Article  Google Scholar 

  29. 29

    Milner, A. D. & Goodale, M. A. The Visual Brain in Action (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  30. 30

    Lhermitte, F. ‘Utilization behavior’ and its relation to lesions of the frontal lobes. Brain 106, 237–255 (1983).

    Article  Google Scholar 

  31. 31

    Cockburn J. Task interruption in prospective memory: a frontal lobe function? Cortex 31, 87–97 (1995).

    CAS  Article  Google Scholar 

  32. 32

    Ungerleider, L. G. & Mishkin, M. in Two Cortical Visual Systems (eds. Ingle, D. J., Goodale, M. A. & Mansfield, R. W. J.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  33. 33

    Nowak, L. & Bullier, J. in Extrastriate Cortex in Primates (eds. Kaas, J., Rochland, K. & Peters, A.) 205–241 (Plenum, New York, 1997).

    Book  Google Scholar 

  34. 34

    Tanné, J., Boussaoud, D., Boyer-Zeller, N. & Rouiller, E. M. Direct visual pathways for reaching movements in the macaque monkey. Neuroreport 7, 267–272 (1995).

    Article  Google Scholar 

  35. 35

    Rossetti, Y. Implicit short-lived motor representations of space in brain damaged and healthy subjects. Conscious. Cogn. 7, 520–558 (1998).

    CAS  Article  Google Scholar 

  36. 36

    Sakata, H. & Taira, M. Parietal control of hand action. Curr. Opin. Neurobiol. 4, 847–856 (1994).

    CAS  Article  Google Scholar 

  37. 37

    Rushworth, M. F. S., Nixon, P. D. & Passingham, R. E. Parietal cortex and movement I. Movement selection and reaching. Exp. Brain Res. 2, 292–310 (1997).

    Article  Google Scholar 

  38. 38

    Pisella, L. & Rossetti, Y. in Beyond Dissociation: Interaction Between Dissociated Implicit and Explicit Processing. (eds. Rossetti, Y. & Revonsuo, A.) 129–152 (Benjamins, Amsterdam, 2000).

    Book  Google Scholar 

  39. 39

    Desmurget, M. et al. Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat. Neurosci. 2, 563–567 (1999).

    CAS  Article  Google Scholar 

  40. 40

    Prablanc, C., Pélisson, D. & Goodale, M. A. Role of retinal feedback of target position in guiding the hand. Exp. Brain Res. 62, 293–302 (1986).

    CAS  Article  Google Scholar 

  41. 41

    Jakobson, L. S., Archibald, Y. M., Carey, D. P. & Goodale, M. A. A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29, 803–809 (1991).

    CAS  Article  Google Scholar 

  42. 42

    Faugier-Grimaud, S., Frenois, C. & Peronnet, F. Effects of posterior parietal lesions on visually guided movements in monkeys. Exp. Brain Res. 59, 125–128 (1985).

    CAS  Article  Google Scholar 

  43. 43

    Schwartz, A. B. Distributed motor processing in cerebral cortex. Curr. Opin. Neurobiol. 4, 840–846 (1994).

    CAS  Article  Google Scholar 

  44. 44

    Mattingley, J. B., Husain, M., Rorden, C., Kennard, C. & Driver, J. Motor role of human inferior parietal lobe revealed in unilateral neglect patients. Nature 392, 179–182 (1998).

    CAS  Article  Google Scholar 

  45. 45

    Mattingley, J. B. et al. The effects of competition and motor reprogramming on visuomotor selection in unilateral neglect. Exp. Brain Res. 120, 243–256 (1998).

    CAS  Article  Google Scholar 

  46. 46

    Jeannerod, M., Decety, J. & Michel, F. Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia 32, 369–380 (1994).

    CAS  Article  Google Scholar 

  47. 47

    Gentilucci, M., Chieffi, S., Daprati, E., Saetti, M. C. & Toni, Y. Visual illusion and action. Neuropsychologia 34, 369–376 (1996).

    CAS  Article  Google Scholar 

  48. 48

    Haffenden, A. M. & Goodale, M. A. Perceptual associations and visuomotor programming. Cogn. Neurosci. (in press).

  49. 49

    Pisella, L., Arzi, M. & Rossetti, Y. The timing of color and location processing in the motor context. Exp. Brain Res. 121, 270–276 (1998).

    CAS  Article  Google Scholar 

  50. 50

    Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, Stuttgart, 1988).

    Google Scholar 

Download references


This work was supported by Région Rhône-Alpes and a grant from the Center for Consciousness Research (University of Arizona). The authors thank A.D. Milner, D. Pelisson and C. Prablanc for their comments on a previous version of the manuscript, M. Arzi for the software programming, P. Mazoyer, J.L. Borach, M. Soulier and S. Terronnes for their technical assistance, and patient I.G. for her collaboration.

Author information



Corresponding author

Correspondence to Y. Rossetti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pisella, L., Gréa, H., Tilikete, C. et al. An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3, 729–736 (2000).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing