Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surround modulation in human vision unmasked by masking experiments

Abstract

The responses of neurons in cat and monkey primary visual cortex are modulated by stimuli outside the classical receptive field. Here we report psychophysical evidence from masking experiments for two distinct types of surround modulation, one narrowly tuned to iso-orientation (stimuli with center and surround at the same orientation) and the other broadly tuned to cross-orientation (center and surround at perpendicular orientations). Surround modulation at iso- and cross-orientations showed distinct contrast dependencies, and high-contrast cross-oriented surrounds were able to completely eliminate masking. Surround modulation was modeled by subtracting divisive inhibition that raised the gain of spatial filters.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimuli.
Figure 2: Effects of relative orientation on surround modulation.
Figure 3: Effects of surround contrasts on surround modulation.
Figure 4: Effects of relative orientation and spatial frequency on surround modulation at high- and equal-surround contrasts.
Figure 5: Surround modulation at different stimulus spatial frequencies.

Similar content being viewed by others

References

  1. Gilbert, C. D. & Wiesel, T. N. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 30, 1689–1701 (1990).

    Article  CAS  Google Scholar 

  2. Knierim, J. J. & Van Essen, D. C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67, 961–980 (1992).

    Article  CAS  Google Scholar 

  3. Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J. & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492–496 (1995).

    Article  CAS  Google Scholar 

  4. Levitt, J. B. & Lund, J. S. Contrast dependence of contextual effects in primate visual cortex. Nature 387, 73–76 (1997).

    Article  CAS  Google Scholar 

  5. Sengpiel, F., Sen, A. & Blakemore, C. Characteristics of surround inhibition in cat area 17. Exp. Brain Res. 116, 216–228 (1997).

    Article  CAS  Google Scholar 

  6. Polat, U. & Sagi, D. Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Res. 33, 993–999 (1993).

    Article  CAS  Google Scholar 

  7. Polat, U. & Sagi, D. The architecture of perceptual spatial interactions. Vision Res. 34, 73–78 (1994).

    Article  CAS  Google Scholar 

  8. Adini, Y., Sagi, D. & Tsodyks, M. Excitatory-inhibitory network in the visual cortex: psychophysical evidence. Proc. Natl. Acad. Sci. USA 94, 10426–10431 (1997).

    Article  CAS  Google Scholar 

  9. Cannon, M. W. & Fullenkamp, S. C. Spatial interactions in apparent contrast: Inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vision Res. 31, 1985–1998 (1991).

    Article  CAS  Google Scholar 

  10. Ellemberg, D., Wilkinson, F., Wilson, H. R. & Arsenault, A. S. Apparent contrast and spatial frequency of local texture elements. J. Opt. Soc. Am. A 15, 1733–1739 (1998).

    Article  CAS  Google Scholar 

  11. Treisman, A. Preattentive processing in vision. Comput. Vis. Image Proc. 31, 156–177 (1985).

    Article  Google Scholar 

  12. Wilson, H. R. & Gelb, D. J. Modified line element theory for spatial frequency and width discrimination. J. Opt. Soc. Am. A 1, 124–131 (1984).

    Article  CAS  Google Scholar 

  13. Yu, C. & Levi, D. M. End-stopping and length tuning in psychophysical spatial filters. J. Opt. Soc. Am. A 14, 2346–2354 (1997).

    Article  CAS  Google Scholar 

  14. Legge, G. E. & Foley, J. M. Contrast masking in human vision. J. Opt. Soc. Am. 70, 1458–1470 (1980).

    Article  CAS  Google Scholar 

  15. Toth, L. J., Rao, S. C., Kim, D., Somers, D. & Sur, M. Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. Proc. Natl. Acad. Sci. USA 93, 9869–9874 (1996).

    Article  CAS  Google Scholar 

  16. Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T. & Norcia, A. M. Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 391, 580–584 (1998).

    Article  CAS  Google Scholar 

  17. Foley, J. M. Human luminance pattern-vision mechanisms: masking experiments require a new model. J. Opt. Soc. Am. A 11, 1710–1719 (1994).

    Article  CAS  Google Scholar 

  18. Solomon, J. A. & Morgan, M. J. Facilitation from collinear flanks is cancelled by non-collinear flanks. Vision Res. 40, 279–286 (2000).

    Article  CAS  Google Scholar 

  19. Olzak, L. A. & Thomas, J. P. Neural recoding in human pattern vision: model and mechanisms. Vision Res. 39, 231–256 (1999).

    Article  CAS  Google Scholar 

  20. Das, A. & Gilbert, C. D. Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature 399, 655–661 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01EY01728 and P30EY07551. We thank Y. Chino, S. Klein and S. Stevenson for comments and discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, C., Levi, D. Surround modulation in human vision unmasked by masking experiments. Nat Neurosci 3, 724–728 (2000). https://doi.org/10.1038/76687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing