Review Article | Published:

From form to function: calcium compartmentalization in dendritic spines

Nature Neuroscience volume 3, pages 653659 (2000) | Download Citation

Subjects

Abstract

Dendritic spines compartmentalize calcium, and this could be their main function. We review experimental work on spine calcium dynamics. Calcium influx into spines is mediated by calcium channels and by NMDA and AMPA receptors and is followed by fast diffusional equilibration within the spine head. Calcium decay kinetics are controlled by slower diffusion through the spine neck and by spine calcium pumps. Calcium release occurs in spines, although its role is controversial. Finally, the endogenous calcium buffers in spines remain unknown. Thus, spines are calcium compartments because of their morphologies and local influx and extrusion mechanisms. These studies highlight the richness and heterogeneity of pathways that regulate calcium accumulations in spines and the close relationship between the morphology and function of the spine.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Estructura de los centros nerviosos de las aves. Rev. Trim. Histol. Norm. Pat. 1, 1–10 (1888).

  2. 2.

    Significación fisiológica de las expansiones protoplásmicas y nerviosas de la sustancia gris. Congreso Médico Valenciano. June 24 (1891).

  3. 3.

    Neue darstellung vom histologischen bau des centralnervensystem. Arch. Anat. Entwick. 319–428 (1893).

  4. 4.

    & Some features of the submicroscopic morphology of synapses in frog and earthworm. J. Biophys. Biochem. Cytol. 1, 47–58 (1955).

  5. 5.

    Synapses in the central nervous system. J Biophys. Biochem. Cytol. 2, 193–201 (1956).

  6. 6.

    Electron microscopy of synaptic contacts on dendritic spines of the cerebral cortex. Nature 183, 1592–1594 (1959).

  7. 7.

    The Synaptic Organization of the Brain (Oxford Univ. Press, Oxford, 1990).

  8. 8.

    in Cellular Mechanisms Subserving Changes in Neuronal Activity (eds. Woody, C. D., Brown, K. A., Crow, T. J. & Knispel, J. D.) 13–21 (Brain Information Services, Los Angeles, California, 1974).

  9. 9.

    & in Computer Simulation in Brain Science (ed. Cotterill, R. M. J.) 26–43 (Cambridge Univ. Press, Cambridge, UK, 1988).

  10. 10.

    & Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371 (1994).

  11. 11.

    The dendritic spine: a multifunctional integrative unit. J. Neurophysiol. 75, 2197–2210 (1996).

  12. 12.

    in Biophysics of Computation (ed. Koch, C.) 280–308 (Oxford Univ. Press, New York, 1999).

  13. 13.

    Electrically coupled but chemically isolated synapses: dendritic spines and calcium in a rule for synaptic modification. Prog. Neurobiol. 31, 507–528 (1988).

  14. 14.

    A mechanism for the Hebb and anti-Hebb processes underlying learning and memory. Proc. Natl. Acad. Sci. USA 86, 9574–9578 (1989).

  15. 15.

    Is the function of dendritic spines to concentrate calcium? Brain Res. 519, 338–342 (1990).

  16. 16.

    & The function of dendritic spines—devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413–422 (1993).

  17. 17.

    & Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction. J. Biol. Chem. 260, 9039–9046 (1985).

  18. 18.

    & Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell 44, 861–870 (1986).

  19. 19.

    , , , & Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721 (1983).

  20. 20.

    , , & Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242, 81–84 (1988).

  21. 21.

    Fluorescent probes of cell signaling. Annu. Rev. Neurosci. 12, 227–253 (1989).

  22. 22.

    Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells. Proc. Natl. Acad. Sci. USA 83, 6179–6183 (1986).

  23. 23.

    , , & Confocal microscopy: applications in neurobiology. Trends Neurosci. 11, 345–351 (1988).

  24. 24.

    , & Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

  25. 25.

    & Calcium gradients and buffers in bovine chromaffin cells. J. Physiol.(Lond.) 450, 273–301 (1992).

  26. 26.

    , & The quantitative analysis of presynaptic calcium dynamics that contribute to short-term synaptic enhacement. J. Neurosci. 15, 7940–7952 (1995).

  27. 27.

    Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium 24, 345–375 (1998).

  28. 28.

    & Dendritic calcium dynamics. Curr. Opin. Neurobiol. 4, 373–382 (1994).

  29. 29.

    in Dendrites (eds. Stuart, G., Spruston, N. & Hausser, M.) 161–192 (Oxford Univ. Press, Oxford, 1999).

  30. 30.

    & The dynamics of free calcium in dendritic spines in response to repetitive input. Science 236, 1311–1315 (1987).

  31. 31.

    & Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 354, 73–76 (1991).

  32. 32.

    , & Independent regulation of calcium revealed by imaging dendritic spines. Nature 354, 76–80 (1991).

  33. 33.

    , , & Characterization of the Ca2+ signals induced in hippocampal CA1 neurons by the synaptic activation of NMDA receptors. J. Physiol. (Lond.) 469, 693–716 (1993).

  34. 34.

    , & Confocal laser scanning microscopy reveals voltage-gated calcium signals within hippocampal dendritic spines. J. Neurobiol. 25, 220–233 (1994).

  35. 35.

    , , & Visualization of quantal synaptic transmission by dendritic calcium imaging. Nature 263, 529–532 (1994).

  36. 36.

    , & Mapping miniature synaptic currents to single synapses using calcium imaging reveals heterogeneity in postsynaptic output. Neuron 15, 159–168 (1995).

  37. 37.

    et al. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J. Neurosci. Methods 54, 151–162 (1994).

  38. 38.

    & Dendritic spines as basic units of synaptic integration. Nature 375, 682–684 (1995).

  39. 39.

    , & The Comparative Anatomy of the Nervous System of Vertebrates, Including Man 73–94 (MacMillan, New York, 1936).

  40. 40.

    The Organization of Behaviour (Wiley, New York, 1949).

  41. 41.

    , , & Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. Acta. Physiol. Scand. 126, 317–319 (1986).

  42. 42.

    & A synaptically controlled, associative signal for hebbian plasticity in hippocampal neurons. Science 275, 209–212 (1997).

  43. 43.

    , , & Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

  44. 44.

    , , , & A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998).

  45. 45.

    , & Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 92, 8279–8282 (1995).

  46. 46.

    , & Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice. Neuron 14, 1223–1231 (1995).

  47. 47.

    , , & Mechanisms of calcium influx into spines: Heterogeneity among spines, coincidence detection by NMDA receptors and optical quantal analysis. J. Neurosci. 19, 1976–1987 (1999).

  48. 48.

    , & Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron 22, 115–124 (1999).

  49. 49.

    , & Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices. J. Neurophysiol. 81, 1404–1411 (1999).

  50. 50.

    , & Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399, 151–155 (1999).

  51. 51.

    , , & NMDA receptor-mediated subthreshold Ca(2+) signals in spines of hippocampal neurons. J. Neurosci. 20, 1791–1799 (2000).

  52. 52.

    & Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc. Natl. Acad. Sci. USA 95, 9596–9601 (1998).

  53. 53.

    , & NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nat. Neurosci. 1, 114–118 (1998).

  54. 54.

    et al. Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDNA from skeletal muscle sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 86, 8683–8687 (1989).

  55. 55.

    et al. Multiple types of ryanodine receptor/Ca2+ release channels are differentially expressed in rabbit brain. J. Neurosci. 14, 4794–4805 (1994).

  56. 56.

    Neuronal calcium signaling. Neuron 21, 13–26 (1998).

  57. 57.

    , , & Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800–803 (1989).

  58. 58.

    , , & Intracellular channels. Curr. Opin. Neurobiol. 4, 294–303 (1994).

  59. 59.

    & Fast confocal imaging of calcium released from stores in dendritic spines. Eur. J. Neurosci. 10, 2076–2084 (1998).

  60. 60.

    & Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys. J. 75, 2801–2810 (1998).

  61. 61.

    Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 9, 268–287 (1968).

  62. 62.

    & Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396, 753–756 (1998).

  63. 63.

    , & A new class of synaptic response involving calcium release in dendritic spines. Nature 396, 757–760 (1998).

  64. 64.

    , , & All-or-none potentiation at CA3-CA1 synapses. Proc. Natl. Acad. Sci. USA 95, 4732–4737 (1998).

  65. 65.

    , & Competitive calcium binding: Implications for dendritic calcium signaling. J. Comput. Neurosci. 5, 331–348 (1998).

  66. 66.

    , & Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron 18, 473–481 (1997).

  67. 67.

    , & Ca2+ buffering and action potential-evoked Ca2+ signalling in dendrites of pyramidal neurons. Biophys. J. 70, 1069–1081 (1996).

  68. 68.

    , & Dynamics of dendritic calcium transients evoked by quantal release at excitatory hippocampal synapses. Proc. Natl. Acad. Sci. USA 97, 901–906 (2000).

  69. 69.

    & High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. J. Physiol. (Lond.) 496, 617–625 (1996).

  70. 70.

    , , , & Supralinear Ca2+ signaling by cooperative and mobile Ca2+ buffering in Purkinje neurons. Neuron 24, 989–1002 (1999).

  71. 71.

    , , , & Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc. Natl. Acad. Sci. USA 94, 1488–1493 (1997).

  72. 72.

    , , & Cytoplasmic calcium buffer, calbindin-D28k, is regulated by excitatory amino acids. Neuroreport 4, 927–930 (1993).

  73. 73.

    , & Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258, 1812–1815 (1992).

  74. 74.

    , , & Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. Proc. Natl. Acad. Sci. USA 92, 10272–10276 (1995).

  75. 75.

    , & Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679 (1992).

  76. 76.

    & Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci. 17, 6961–6973 (1997).

  77. 77.

    , & Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719 (1996).

  78. 78.

    , , & Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. J. Neurophysiol. 82, 450–462 (1999).

  79. 79.

    , , & Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J. Neurosci. 20, 1722–1734 (2000).

  80. 80.

    The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Phil. Trans. R. Soc. Lond. B Biol. Sci. 353, 583–605 (1998).

  81. 81.

    , & Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. J. Biol. Chem. 270, 12184–12190 (1995).

  82. 82.

    , , & Localization of an endoplasmic reticulum calcium ATPase in rat brain by in situ hybridization. Neuroscience 43, 1–9 (1991).

  83. 83.

    et al. The expression of plasma membrane Ca2+ pump isoforms in cerebellar granule neurons is modulated by Ca2+. J. Biol. Chem. 274, 1667–1676 (1999).

  84. 84.

    & Quantitative fine-structural analysis of olfactory cortical synapses. Proc. Natl. Acad. Sci. USA 96, 4107–4112 (1999).

  85. 85.

    & In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation. Science 263, 823–826 (1994).

  86. 86.

    Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).

  87. 87.

    & Pressure polishing: a method for re-shaping patch pipettes during fire-polishing. J. Neurosci. Methods (in press).

  88. 88.

    & Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys. J. 69, 1272–1280 (1995).

  89. 89.

    & A genetically encoded optical probe of membrane voltage. Neuron 19, 735–741 (1997).

  90. 90.

    , , & Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflugers Arch. 439, 201–207 (1999).

  91. 91.

    & Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

  92. 92.

    et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

  93. 93.

    , , & Rapid actin-based plasticity in dendritic spine. Neuron 20, 847–854 (1998).

  94. 94.

    , , , & Developmental regulation of spine motility in mammalian CNS. Proc. Natl. Acad. Sci. USA 96, 13438–13443 (1999).

  95. 95.

    , , & Salient features of synaptic organisation in the cerebral cortex. Brain Res. Rev. 26, 113–135 (1998).

  96. 96.

    , & Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

  97. 97.

    & Dependence of GABAergic synaptic areas on the interneuron type and target size. J. Neurosci. 20, 375–386 (2000).

  98. 98.

    , & Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

  99. 99.

    & Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

Download references

Acknowledgements

We thank A. Tashiro for Fig. 1, E. Brown, J. Goldberg and J. Kozloski for comments, and M. Kennedy, A. Marks, G. Shepherd, S. Siegelbaum, P. Somogyi, C. Stevens and G. Tamas for discussions. Our laboratory is funded by the National Eye Institute (EY 111787) and the Human Frontier Science Program.

Author information

Affiliations

  1. Dept. of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, Box 2435, New York, New York 10027, USA

    • Rafael Yuste
    • , Ania Majewska
    •  & Knut Holthoff

Authors

  1. Search for Rafael Yuste in:

  2. Search for Ania Majewska in:

  3. Search for Knut Holthoff in:

Corresponding author

Correspondence to Rafael Yuste.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/76609

Further reading