Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons

An Erratum to this article was published on 01 September 1999

Abstract

Most mammalian central neurons receive synaptic input over complicated dendritic arbors. Therefore, timing of synaptic information should vary with synapse location. However, I report that temporal summation at CA1 pyramidal somata does not depend on the location of synaptic input. This spatial normalization of temporal integration requires a dendritic hyperpolarization-activated current (Ih). Shaping of synaptic activity by deactivating a nonuniform Ih could counterbalance filtering by dendrites and effectively remove location-dependent variability in temporal integration, thus enhancing synchronization of neuronal populations and functional capabilities of the hippocampal CA1 region.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ih reduces the location-dependent variability of temporal summation occurring at the soma for Schaffer collateral synaptic input.
Figure 2: With Ih intact, the amount of temporal summation occurring at the soma is constant despite the input location.
Figure 3: The relationship between temporal summation and EPSP amplitude.
Figure 4: Ih channels participate in generating a spatial gradient of EPSP summation.
Figure 5: Temporal summation at the soma is location dependent at extremely hyperpolarized holding potentials.
Figure 6: Ih removes location dependent variability in action potential output.

Similar content being viewed by others

Notes

  1. Editorial Correction:

    The printed version of this article contained an error introduced during editing. The sentence "By subtracting the EPSP trains evoked during Ih blockade from the control train, the time course of synaptic depolarization…" should read "By subtracting the EPSP trains evoked during Ih blockade from the control train, the time course of synaptic hyperpolarization induced by Ih deactivation was examined". We regret the error.

References

  1. Colbert, C. & Johnston, D. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16, 6676–6686 (1996).

    Article  CAS  Google Scholar 

  2. Stuart, G., Spruston, N., Sakmann, B. & Häusser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125– 131 (1997).

    Article  CAS  Google Scholar 

  3. Rall, W. in Neural Theory and Modeling (ed. Reiss, R. F.) 5– 30 (Stanford Univ. Press, Palo Alto, 1964).

    Google Scholar 

  4. Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G. & Frank, K. Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J. Neurophysiol. 30, 1169–1193 (1967).

    Article  CAS  Google Scholar 

  5. Mainen, Z. F., Carnevale, N. T., Zador, A. M., Claiborne, B. J. & Brown, T. H. Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-demensional reconstruction. J. Neurophysiol. 76, 1904 –1923 (1996).

    Article  CAS  Google Scholar 

  6. Andersen, P., Silfvenius, H., Sundberg, S. H. & Sveen, O. A comparison of distal and proximal dendrite synapses on CA1 pyramids in guinea pig hippocampal slices in vitro. J. Physiol. (Lond.) 307, 273–299 (1980).

    Article  CAS  Google Scholar 

  7. Bernander, O., Koch, C. & Douglas, R. J. Amplification and linearization of distal synaptic input to cortical pyramidal neurons. J. Neurophysiol. 6, 2743–2753 (1994).

    Article  Google Scholar 

  8. Cook, E. P. & Johnston, D. Active dendrites reduce location-dependent variability of synaptic input trains. J. Neurophysiol. 78, 2116–2128 (1997).

    Article  CAS  Google Scholar 

  9. Mel B. Synaptic integration in an excitable dendritic tree. J. Neurophysiol. 70, 1086–1101 (1993).

    Article  CAS  Google Scholar 

  10. Johnston, D., Magee, J. C., Colbert, C. & Christie, B. R. Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19, 165–186 (1996).

    Article  CAS  Google Scholar 

  11. Yuste, R. & Tank, D. W. Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16, 701–716 (1996).

    Article  CAS  Google Scholar 

  12. Magee, J. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998).

    Article  CAS  Google Scholar 

  13. Tsubakawa, H, Miura, M. & Kano, M. Elevation of intracellular Na+ induced by hyperpolarization at the dendrites of pyramidal neurones of mouse hippocampus. J. Physiol. (Lond.) (in press).

  14. Schwindt, P. C., Spain, W. J. & Crill, W. E. Modification of current transmitted from apical dendrites to soma by blockade of voltage- and calcium-dependent conductances in rat neocortical neurons. J. Neurophysiol. 59, 468–481 (1998).

    Article  Google Scholar 

  15. Stuart, G. & Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18, 3501–3510 (1998).

    Article  CAS  Google Scholar 

  16. Nicoll, A., Larkman, A. & Blakemore, C. Modulation of EPSP shape and efficacy by intrinsic membrane conductances in rat neocortical pyramidal neurons in vitro. J. Physiol. (Lond.) 468, 693–705 (1993).

    Article  CAS  Google Scholar 

  17. Laurberg, S. Commissural and intrinsic connections of the rat hippocampus. J. Comp. Neurol. 184, 685–708 (1979).

    Article  CAS  Google Scholar 

  18. Buzsaki, G. & Eidelberg, E. Convergence of associational and commissural pathways on CA1 pyramidal cells of the rat hippocampus. Brain Res. 237, 283–290 (1982).

    Article  CAS  Google Scholar 

  19. Hoffman, D. A., Magee, J. C., Colbert, C. M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    Article  CAS  Google Scholar 

  20. Golding, N. L. & Spruston, N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189– 1200 (1998).

    Article  CAS  Google Scholar 

  21. Rinzel, J. & Rall, W. Transient response in a dendritic neuron model for current injected at one branch. Biophys. J. 14, 759–790 (1974).

    Article  CAS  Google Scholar 

  22. Wilson, C. J. Dynamic modification of dendritic cable properties and synaptic transmission by voltage-gated potassium channels. J. Comput. Neurosci. 2, 91–115 (1995).

    Article  CAS  Google Scholar 

  23. Pape, H. Queer current and pacemaker: The hyperpolarization-activated cation current in neurons. Annu. Rev. Physiol. 58, 299– 327 (1996).

    Article  CAS  Google Scholar 

  24. Luthi, A. & McCormick, D. A. H-current: Properties of a neuronal and network pacemaker. Neuron 21, 9–12 (1998).

    Article  CAS  Google Scholar 

  25. Maccaferri, G. & McBain, C. J. The hyperpolarization-activated current and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurons. J. Physiol. (Lond.) 497, 119–130 (1996).

    Article  CAS  Google Scholar 

  26. Buzsaki, G. & Chrobak, J. J. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504–510 (1995).

    Article  CAS  Google Scholar 

  27. O'Keffe, J & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Article  Google Scholar 

  28. Gasparini, S. & Difrancesco, D. Action of the hyperpolarization-activated current blocker ZD 7288 in hippocampal neurons. Pflugers Arch. 435, 99–106 ( 1997).

    Article  CAS  Google Scholar 

  29. Harris, N. C. & Constanti, A. Mechanism of block by ZD7288 of the hyperpolarization-activated inward rectifying current in guinea pig substantia nigra neurons in vitro. J Neurophysiol. 74, 2366–2376 (1995).

    Article  CAS  Google Scholar 

  30. Andreasen, M. & Lambert, J. D. Factors determining the efficacy of distal excitatory synapses in rat hippocampal CA1 pyramidal neurones. J. Physiol. (Lond.) 507, 441–462 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Michael Carruth for technical assistance and Dan Johnston and Brian Christie for discussions throughout the study. ZD7288 was a gift of Zeneca Pharmaceuticals (Macclesfield, UK). This work was supported by National Institute of Health grant NS35865 and the LSUMC Neuroscience Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Magee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magee, J. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 2, 508–514 (1999). https://doi.org/10.1038/9158

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing