Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A cortical locus for the processing of contrast-defined contours

Abstract

Object boundaries in the natural environment are often defined by changes in luminance; in other cases, however, there may be no difference in average luminance across the boundary, which is instead defined by more subtle 'second-order' cues, such as changes in the contrast of a fine-grained texture. The detection of luminance boundaries may be readily explained in terms of visual cortical neurons, which compute the linear sum of the excitatory and inhibitory inputs to different parts of their receptive field. The detection of second-order stimuli is less well understood, but is thought to involve a separate nonlinear processing stream, in which boundary detectors would receive inputs from many smaller subunits. To address this, we have examined the properties of cortical neurons which respond to both first- and second-order stimuli. We show that the inputs to these neurons are also oriented, but with no fixed orientational relationship to the neurons they subserve. Our results suggest a flexible mechanism by which the visual cortex can detect object boundaries regardless of whether they are defined by luminance or texture.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Characteristics and processing of first- and second-order stimuli.
Figure 2: Orientation polar plots for three area 18 neurons.
Figure 3: Measured optimal orientations to first- and second-order stimuli.

References

  1. Hubel, D.H. & Wiesel, T.N. Functional architecture of macaque visual cortex. Proc. R. Soc. Lond. 198, 1–59 (1977)

    CAS  Article  Google Scholar 

  2. DeValois, R.L., Albrecht, D.G. & Thorell, L.G. Spatial frequency selectivity of cells in macaque visual cortex.Vision Res. 22, 545– 559 (1982)

    CAS  Article  Google Scholar 

  3. Spitzer, H.&Hochstein, S. Simple- and complex-cell response dependences on stimulation parameters. J. Neurophysiol. 53, 1244– 1265 (1985)

    CAS  Article  Google Scholar 

  4. Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. 283, 53–77 (1978)

    CAS  Article  Google Scholar 

  5. DeAngelis, G.C., Ohzawa, I. & Freeman, R.D. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II Linearity of temporal and spatial summation . J. Neurophysiol. 69, 1118– 1135 (1993)

    CAS  Article  Google Scholar 

  6. Adelson, E.H. & Bergen, J.R. Spatiotemporal energy models for the perception of motion.J. Opt. Soc. Am. 2, 284–299 (1985)

    CAS  Article  Google Scholar 

  7. Watson, A.B. & Ahumada, A.J. Model of human visual motion sensing . J. Opt. Soc. Am. 2, 322– 342 (1985)

    CAS  Article  Google Scholar 

  8. VanSanten, J.P.H. & Sperling, G. Elaborated Reichardt detectors . J. Opt. Soc. Am. 2, 300– 321 (1985)

    CAS  Article  Google Scholar 

  9. Chubb, C. & Sperling, G. Drift-balanced random stimuli: a basis for studying non-Fourier motion perception. J. Opt. Soc. Am. 5, 1986–2006 ( 1988)

    CAS  Article  Google Scholar 

  10. Cavanagh, P. & Mather, G. Motion: the long and short of it . Spat. Vis. 4, 103–129 (1989)

    CAS  Article  Google Scholar 

  11. Albright, T. Form-cue invariant motion processing in primate visual cortex. Science 255, 1141–1143 (1992)

    CAS  Article  Google Scholar 

  12. Olavarria, J.F., DeYoe, E.A., Knierim, J.J., Fox, J.M. & VanEssen, D.C. Neural responses to visual texture patterns in middle temporal area of the macaque monkey. J. Neurophysiol . 68, 164–181 ( 1992)

    CAS  Article  Google Scholar 

  13. Zhou, Y-X & Baker, C.L. A processing stream in mammalian visual cortex neurons for non-Fourier responses. Science 261, 98–101 (1993)

    CAS  Article  Google Scholar 

  14. Von Der Heydt, R., Peterhans, E. & Baumgartner, G. Illusory contours and cortical neuron responses. Science 224, 1260–1262 ( 1984)

    CAS  Article  Google Scholar 

  15. Grosof, D.H., Shapley, R.M. & Hawken, M.J. Macaque V1 neurons can signal "illusory" contours. Nature 365, 550–552 ( 1993)

    CAS  Article  Google Scholar 

  16. Derrington, A.M. & Henning, G.B. Linear and non-linear mechanisms in pattern vision. Current Biol. 3, 800– 803 (1993)

    CAS  Article  Google Scholar 

  17. Daugman, J.G. & Downing, C.J. Demodulation, predictive coding, and spatial vision. J. Opt. Soc. Am. 4, 641–660 (1995)

    Article  Google Scholar 

  18. Zhou, Y-X . & Baker, C.L. Envelope-responsive neurons in areas 17 and 18 of cat. J. Neurophysiol .72, 2134 –2150 (1994)

    CAS  Article  Google Scholar 

  19. Badcock, D.R. & Derrington, A.M. Detecting the displacements of spatial beats : no role for distortion products. Vision Res. 29, 731–739 ( 1989)

    CAS  Article  Google Scholar 

  20. Graham, N., Beck, J. & Sutter, A. Nonlinear processes in spatial-frequency channel models of perceived texture segregation: effects of sign and amount of contrast. Vision Res . 32, 719–743 ( 1992)

    CAS  Article  Google Scholar 

  21. Wilson, H.R., Ferrera, V.P. & Yo, C. A psychophysically motivated model for two-dimensional motion perception. Vis. Neurosci. 9, 79–97 (1992)

    CAS  Article  Google Scholar 

  22. Ledgeway, T. & Smith, A.T. Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision. Vision Res. 34, 2727–2740 (1994)

    CAS  Article  Google Scholar 

  23. Solomon, J.A. & Sperling, G. Full-wave and half-wave rectification in second-order motion perception. Vision Res. 34, 2239–2257 (1994)

    CAS  Article  Google Scholar 

  24. Werkhoven, P., Sperling, G. & Chubb, C. Perception of apparent motion between dissimilar gratings: spatiotemporal properties. Vision Res. 34, 2741– 2759 (1994)

    CAS  Article  Google Scholar 

  25. Langley, K., Fleet, D.J. & Hibbard, P.B. Linear filtering precedes nonlinear processing in early vision. Current Biol. 6, 891– 896 (1996)

    CAS  Article  Google Scholar 

  26. Marida, K.V. Statistics of Directional Data (Academic Press Inc., London 1972 )

    Google Scholar 

  27. Vidyasagar, T.R. & Urbas, J.V. Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Exp. Brain. Res. 46, 157–169 (1982)

    CAS  Article  Google Scholar 

  28. Vidyasagar, T.R. & Heide, W. Geniculate orientation biases seen with moving sine wave gratings: implications for a model of simple cell afferent connectivity. Exp. Brain. Res. 57, 196– 200 (1984)

    Article  Google Scholar 

  29. Soodak, R.E., Shapley, R.M. & Kaplan, E. Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat. J. Neurophysiol. 58, 267–275 (1987)

    CAS  Article  Google Scholar 

  30. Shou, T. & Leventhal, A.G. Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus. J. Neurosci. 9, 4287–4302 ( 1989)

    CAS  Article  Google Scholar 

  31. Levay, S. & Sherk, H. The visual claustrum of the cat. I. Structure and connections. J. Neurosci. 1, 956–980 (1981)

    CAS  Article  Google Scholar 

  32. Sherk, H. & Levay, S. The visual claustrum of the cat. III. Receptive field properties. J. Neurosci. 1, 956– 980 (1981)

    Article  Google Scholar 

  33. Ringach, D.L., Hawken, M.J. & Shapley, R. Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281–284 ( 1997)

    CAS  Article  Google Scholar 

  34. Mareschal, I. & Baker, C.L. Bandpass temporal and spatial frequency responses to envelopes of second order stimuli in area 18 neurons. Invest. Opthalmol. Vis. Sci. 38, S624 ( 1997)

    Google Scholar 

  35. Pelli, D.G. The VideoToolbox software for visual psychophysics: Transforming numbers into movies . Spat. Vis. 10, 437–442 (1997)

    CAS  Article  Google Scholar 

  36. Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 10, 443– 446 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Canadian MRC (MA 9685) to C.L.B. and an FCAR fellowship to I.M. We are indebted to Steven Dakin for providing comments on this manuscript. We are also grateful to Jingjiang Lei and Lynda Domazet for technical assistance. We also wish to thank Rhone-Poulenc Rorer for their donation of Gallamine Triethiodide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Mareschal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mareschal, I., Baker, C. A cortical locus for the processing of contrast-defined contours. Nat Neurosci 1, 150–154 (1998). https://doi.org/10.1038/401

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/401

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing