Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors

Abstract

Separating contributions of pre- and postsynaptic factors to the maintenance of long-term potentiation (LTP) and long-term depression (LTD) has been confounded by their experimental interdependence. To isolate the postsynaptic contribution, glutamate-receptor-mediated currents were elicited by localized photolysis of caged glutamate in small spots along the dendrites of CA1 hippocampal pyramidal cells. With synaptic transmission blocked, pairing depolarization of pyramidal cells with repeated photolysis of caged glutamate at one site markedly and persistently depressed subsequent responses to glutamate; responses at a second, unpaired site were unchanged. Like synaptically induced LTD at the CA3–CA1 synapse, this depression was site specific, NMDA-receptor dependent and blocked by protein-phosphatase inhibitors. Thus, robust, persistent alterations of postsynaptic glutamate receptor efficacy can occur without presynaptic neurotransmitter release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Focal photolysis of caged glutamate elicits fast glutamatergic currents.
Figure 2: Pairing depolarization of pyramidal cells with focal glutamate photolysis induces site-specific, long-term depression.
Figure 3: Long-term depression of glutamate responses requires activation of NMDA receptors.
Figure 4: Long-term depression of glutamate responses requires protein phosphatases.

Similar content being viewed by others

References

  1. Bliss, T.V.P. Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  2. Malenka, R.C. Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78, 535–538 (1994).

    Article  CAS  Google Scholar 

  3. Bear, M.F. Malenka, R.C. Synaptic plasticity: LTP and LTD. Curr. Biol. 4, 389–399 ( 1994).

    CAS  Google Scholar 

  4. Bolshakov, V.Y. Siegelbaum, S.A. Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264, 1148–1152 ( 1994).

    Article  CAS  Google Scholar 

  5. Oliet, S.H.R. Malenka, R.C. Nicoll, R.A. Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18, 969–982 (1997).

    Article  CAS  Google Scholar 

  6. Lynch, G. Larson, J. Kelso, S. Barrionuevo, G. Schottler, F. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721 (1983).

    Article  CAS  Google Scholar 

  7. Gustafsson, B. Wigstrom, H. Abraham, W.C. Huang, Y.-Y. Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J. Neurosci. 7, 774 –780 (1987).

    Article  CAS  Google Scholar 

  8. Malinow, R. Miller, J.P. Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature 320, 529–530 ( 1986).

    Article  CAS  Google Scholar 

  9. Malinow, R. Schulman, H. Tsien, R.W. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862– 866 (1989).

    Article  CAS  Google Scholar 

  10. Malenka, R.C. et al. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340, 554 –557 (1989).

    Article  CAS  Google Scholar 

  11. Mulkey, R.M. Herron, C.E. Malenka, R.C. An essential role for protein phosphatases in hippocampal long-term depression . Science 261, 1051–1055 (1993).

    Article  CAS  Google Scholar 

  12. Kauer, J.A. Malenka, R.C. Nicoll, R.A. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1, 911– 917 (1988).

    Article  CAS  Google Scholar 

  13. Muller, D. Lynch, G. Long-term potentiation differentially affects two components of synaptic responses in the hippocampus. Proc. Natl Acad. Sci.USA 85, 9346–9350 (1988).

    Article  CAS  Google Scholar 

  14. Davies, S.N. Lester, R.A.J. Reymann, K.G. Collingridge, G.L. Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation. Nature 338, 500–503 ( 1989).

    Article  CAS  Google Scholar 

  15. Malgaroli, A. Tsien, R.W. Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons . Nature 357, 134–139 (1992).

    Article  CAS  Google Scholar 

  16. Manabe, T. Renner, P. Nicoll, R.A. Postsynaptic contributions to long-term potentiation revealed by the analysis of miniature synaptic currents. Nature 355, 50–55 (1992).

    Article  CAS  Google Scholar 

  17. Stevens, C.F. Wang, Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371, 704–707 (1994).

    Article  CAS  Google Scholar 

  18. Lledo, P.-M. et al. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl Acad. Sci. USA 92, 11175–11179 ( 1995).

    Article  CAS  Google Scholar 

  19. Liao, D. Hessler, N.A. Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).

    Article  CAS  Google Scholar 

  20. Oliet, S.H.R. Malenka, R.C. Nicoll, R.A. Bidirectional control of quantal size by synaptic activity in the hippocampus . Science 271, 1294–1297 (1996).

    Article  CAS  Google Scholar 

  21. Givens, R.S. Jung, A. Park, C.-H. Weber, J. Bartlett, W. New photoactivated protecting groups. 7. p-Hydroxyphenacyl: a phototrigger for excitatory amino acids and peptides. J. Am. Chem. Soc. 119, 8369–8370 (1997).

    Article  CAS  Google Scholar 

  22. Givens, R.S. Weber, J.F.W. Jung, A.H. Park, C.H. New photoprotecting groups: desyl and p-hydroxyphenylacyl phosphate and carboxylate esters. Meth. Enzymol. 291, 1–29 (1998).

    Article  CAS  Google Scholar 

  23. Kelso, S.R. Ganong, A.H. Brown, T.H. Hebbian synapses in hippocampus. Proc. Natl Acad. Sci.USA 83, 5326–5330 (1986).

    Article  CAS  Google Scholar 

  24. Malenka, R.C. Kauer, J.A. Zucker, R.S. Nicoll, R.A. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242, 81–84 ( 1988).

    Article  CAS  Google Scholar 

  25. Mulkey, R.M. Malenka, R.C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975 (1992).

    Article  CAS  Google Scholar 

  26. Cummings, J.A. Mulkey, R.M. Nicoll, R.A. Malenka, R.C. Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16, 825–833 ( 1996).

    Article  CAS  Google Scholar 

  27. Dudek, S.M. Bear, M.F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade . Proc. Natl Acad. Sci.USA 89, 4363– 4367 (1992).

    Article  CAS  Google Scholar 

  28. Mulkey, R.M. Endo, S. Shenolikar, S. Malenka, R.C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488 ( 1994).

    Article  CAS  Google Scholar 

  29. Coussens, C.M. Teyler, T.J. Protein kinase and phosphatase activity regulate the form of synaptic plasticity expressed. Synapse 24, 97–103 (1996).

    Article  CAS  Google Scholar 

  30. Cormier, R.J. Mauk, M.D. Kelly, P.T. Glutamate iontophoresis induces long-term potentiation in the absence of evoked presynaptic activity. Neuron 10, 907– 919 (1993).

    Article  CAS  Google Scholar 

  31. Lisman, J. A mechanism for the Hebb and the anti-Hebb process underlying learning and memory. Proc. Natl Acad. Sci.USA 86, 9574– 9578 (1989).

    Article  CAS  Google Scholar 

  32. Heynen, A.J. Abraham, W.C. Bear, M.F. Bidirectional modification of CA1 synapses in the adult hippocampus in vivo . Nature 381, 163–166 (1996).

    Article  CAS  Google Scholar 

  33. Clements, J.D. Lester, R.A. Tong, G. Jahr, C.E. Westbrook, G.L. The time course of glutamate in the synaptic cleft. Science 258, 1498–1501 ( 1992).

    Article  CAS  Google Scholar 

  34. Vickery, R.M. Bindman, L.J. Long-lasting decreases of AMPA responses following postsynaptic activity in single hippocampal neurons. Synapse 25, 103–106 ( 1997).

    Article  CAS  Google Scholar 

  35. Lisman, J. Malenka, R.C. Nicoll, R.A. Malinow, R. Learning mechanisms: the case for CaM-KII. Science 276, 2001– 2002 (1997).

    Article  CAS  Google Scholar 

  36. Rosenmund, C. Clements, J.D. Westbrook, G.L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 ( 1993).

    Article  CAS  Google Scholar 

  37. Wyllie, D.J.A. Manabe, T. Nicoll, R.A. A rise in postsynaptic Ca2+ potentiates miniature excitatory postsynaptic currents and AMPA responses in hippocampal neurons. Neuron 12, 127–138 ( 1994).

    Article  CAS  Google Scholar 

  38. Selig, D.K. Hjelmstad, G.O. Herron, C. Nicoll, R.A. Malenka, R.C. Independent mechanisms for long-term depression of AMPA and NMDA responses. Neuron 15, 417– 426 (1995).

    Article  CAS  Google Scholar 

  39. Ito, M. Sakurai, M. Tongroach, P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol. 324, 113–134 (1982).

    Article  CAS  Google Scholar 

  40. Linden, D.J. Dickinson, M.H. Smeyne, M. Connor, J.A. A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron 7, 81–89 (1991).

    Article  CAS  Google Scholar 

  41. McMahon, L.L. Kauer, J.A. Hippocampal interneurons express a novel form of synaptic plasticity. Neuron 18, 295–305 (1997).

    Article  CAS  Google Scholar 

  42. Dalva, M.B. Katz, L.C. Rearrangements of synaptic connections in visual cortex revealed by laser photostimulation. Science 265, 255–258 (1994).

    Article  CAS  Google Scholar 

  43. Kandler, K. Givens, R.S. Katz, L.C. in Imaging Living Cells: a Laboratory Manual (eds. Yuste, R., Lanni, F. & Konnerth, A.) (Cold Spring Harbor Press, in press).

Download references

Acknowledgements

We thank R. Givens for the gift of p-hydroxyphenacyl-glutamate. We are grateful to R. Timberlake and the physics shop at Duke University for support, M. Gray for histological work, and D. Nelson for writing the data acquisition and analysis programs. We also thank L. McMahon, F. Schweizer, and T. Tucker for discussions and comments on the manuscript. Supported by EY06730-02 to K.K. and NS30500-06A1 to J.A.K. L.C.K. is an investigator at the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kandler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandler, K., Katz, L. & Kauer, J. Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors. Nat Neurosci 1, 119–123 (1998). https://doi.org/10.1038/368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing