Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Dendritic arithmetic

Pyramidal neurons integrate synaptic inputs arriving on a structurally and functionally complex dendritic tree that has nonlinear responses. A study in this issue shows that nonlinear computation occurs in individual dendritic branches, and suggests a possible approach to building neural network models directly connected to the behavior of real neurons and synapses.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spiking in individual dendritic branches implies a three-layer model of synaptic integration.

References

  1. Polsky, A., Mel, B.W. & Schiller, J. Nat. Neurosci. 7, 621–627 (2004).

    Article  CAS  Google Scholar 

  2. Dayan, P. & Abbott, L.F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, Cambridge, Massachusetts, USA, 2001).

    Google Scholar 

  3. Fausett, L.V. Fundamentals of Neural Networks (Prentice Hall, Upper Saddle River, New Jersey, USA, 1994).

    Google Scholar 

  4. Koch, C. & Segev, I. Nat. Neurosci. 3 (Suppl.), 1171–1177 (2000).

    Article  CAS  Google Scholar 

  5. Williams, S.R. & Stuart, G.J. Trends Neurosci. 26, 147–154 (2003).

    Article  CAS  Google Scholar 

  6. Hausser, M., Spruston, N. & Stuart, G.J. Science 290, 739–744 (2000).

    Article  CAS  Google Scholar 

  7. Poirazi, P., Brannon, T. & Mel, B.W. Neuron 37, 977–987 (2003).

    Article  CAS  Google Scholar 

  8. Schiller, J., Major, G., Koester, H.J. & Schiller, Y. Nature 404, 285–289 (2000).

    Article  CAS  Google Scholar 

  9. Kampa, B.M., Clements, J., Jonas, P. & Stuart, G.J. J. Physiol. (Lond.) 556, 337–345 (2004).

    Article  CAS  Google Scholar 

  10. Vargas-Caballero, M & Robinson, H.P. J. Neurophysiol. 89, 2778–2783 (2003).

    Article  CAS  Google Scholar 

  11. Lester, R.A. & Jahr, C.E. J. Neurosci. 12, 635–643 (1992).

    Article  CAS  Google Scholar 

  12. Larkum, M.E., Zhu, J.J. & Sakmann, B. J. Physiol. (Lond.) 533, 447–466 (2001).

    Article  CAS  Google Scholar 

  13. Yuste, R., Gutnick, M.J., Saar, D., Delaney, K.R. & Tank, D.W. Neuron 13, 23–43 (1994).

    Article  CAS  Google Scholar 

  14. Häusser, M. & Mel, B.W. Curr. Opin. Neurobiol. 13, 372–383 (2003).

    Article  Google Scholar 

  15. Lorincz, A., Notomi, T., Tamas, G., Shigemoto, R. & Nusser, Z. Nat. Neurosci. 5, 1185–1193 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Spruston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spruston, N., Kath, W. Dendritic arithmetic. Nat Neurosci 7, 567–569 (2004). https://doi.org/10.1038/nn0604-567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0604-567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing