Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Illusions, perception and Bayes

A new model shows that a range of visual illusions in humans can be explained as rational inferences about the odds that a motion stimulus on the retina results from a particular real-world source.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bayesian ideal observers for tasks involving the perception of objects or events that differ along two physical dimensions, such as aspect ratio and slant, size and distance, or speed and direction of motion.


  1. Weiss, Y., Simoncelli, E. & Adelson, E.H. Nat. Neurosci. 5, 598–604 (2002).

    Article  CAS  Google Scholar 

  2. Freeman, W.T. Nature 368, 542–545 (1994).

    Article  CAS  Google Scholar 

  3. Knill, D.C., Kersten, D. & Yuille, A. in Perception as Bayesian Inference (eds. Knill, D. C. & Richards, R. W.) 1–21 (Cambridge Univ. Press, 1996).

    Google Scholar 

  4. Yuille, A.L. & Bülthoff, H.H. in Perception as Bayesian Inference (eds. Knill, D. C. & Richards, R. W.) 123–161 (Cambridge Univ. Press, 1996).

    Book  Google Scholar 

  5. Kersten, D. in The New Cognitive Neurosciences. 2nd Edn. (ed. Gazzaniga, M. S.) 353–363 (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  6. Geisler, W. Psychol. Rev. 96, 267–314 (1989).

    Article  CAS  Google Scholar 

  7. Liu, Z. & Kersten, D. Vision Res. 38, 2507–2519 (1998).

    Article  CAS  Google Scholar 

  8. Bloj, M.G., Kersten, D. & Hurlbert, A.C. Nature 402, 877–879 (1999).

    Article  CAS  Google Scholar 

  9. Saunders, J.A. & Knill, D.C. Vision Res. 41, 3163–3183 (2001).

    Article  CAS  Google Scholar 

  10. Mamassian, P., Landy, M.S. & Maloney, L.T. in Statistical Theories of the Brain (eds. Rao, R., Olshausen, B. & Lewicki, M.) 13–36 (MIT Press, Cambridge, Massachusetts, 2002).

    Google Scholar 

  11. Ernst, M.O. & Banks, M.S. Nature 415, 429–433 (2002).

    Article  CAS  Google Scholar 

  12. Geisler, W.S., Perry, J.S., Super, B.J. & Gallogly, D.P. Vision Res. 41, 711–724 (2001).

    Article  CAS  Google Scholar 

  13. Brainard, D.H. & Freeman, W.T. J. Opt. Soc. Am. A 14, 1393–1411 (1997).

    Article  CAS  Google Scholar 

  14. Schrater, P.R. & Kersten, D. How optimal depth cue integration depends on the task. Int. J. Comput. Vision 40, 73–91 (2000).

    Article  Google Scholar 

  15. Geisler, W.S. & Diehl, R. Phil. Trans. R. Soc. Lond. B Biol. Sci. 357, 419–448 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geisler, W., Kersten, D. Illusions, perception and Bayes. Nat Neurosci 5, 508–510 (2002).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing