Characterization of an ocular photopigment capable of driving pupillary constriction in mice

Abstract

This work demonstrates that transgenic mice lacking both rod and cone photoreceptors (rd/rd cl) retain a pupillary light reflex (PLR) that does not rely on local iris photoreceptors. These data, combined with previous reports that rodless and coneless mice show circadian and pineal responses to light, suggest that multiple non-image-forming light responses use non-rod, non-cone ocular photoreceptors in mice. An action spectrum for the PLR in rd/rd cl mice demonstrates that over the range 420–625 nm, this response is driven by a single opsin/vitamin A-based photopigment with peak sensitivity around 479 nm (opsin photopigment/OP479). These data represent the first functional characterization of a non-rod, non-cone photoreceptive system in the mammalian CNS.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pupillary light reflexes in wild-type and rd/rd cl mice.
Figure 2: Central pathways mediate the PLR in rd/rd cl mice.
Figure 3: Irradiance–response curves to 506 nm light.
Figure 4: Spectral sensitivity of the PLR in wild-type and rd/rd cl mice.
Figure 5: Photopigments in the murine eye.

References

  1. 1

    Foster, R. G. et al. Circadian photoreception in the retinally degenerate mouse (rd/rd). J. Comp. Physiol. 169, 39–50 (1991).

    CAS  Article  Google Scholar 

  2. 2

    Klein, D. C. & Weller, J. L. Rapid light-induced decrease in pineal serotonin N-acetyltransferase activity. Science 177, 532–533 (1972).

    CAS  Article  Google Scholar 

  3. 3

    Badia, P. et al. Bright light effects on body temperature, alertness, EEG and behavior. Physiol. Behav. 50, 583–588 (1991).

    CAS  Article  Google Scholar 

  4. 4

    Cajochen, C., Dijk, D.-J. & Borbely, A. Dynamics of EEG slow-wave activity and core body temperature in human sleep after exposure to bright light. Sleep 15, 337–323 (1992).

    CAS  PubMed  Google Scholar 

  5. 5

    Cajochen, C., Zeitzer, J., Czeisler, C. & Dijk, D.-J. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav. Brain Res. 115, 75–83 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Nelson, D. & Takahashi, J. Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). J. Physiol. (Lond.) 439, 115–145 (1991).

    CAS  Article  Google Scholar 

  7. 7

    Provencio, I., Cooper, H. M. & Foster, R. G. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J. Comp. Neurol. 395, 417–439 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Foster, R. G. Shedding light on the biological clock. Neuron 20, 829–832 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Pickard, G. Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus. Neurosci. Lett. 55, 211–217 (1985).

    CAS  Article  Google Scholar 

  10. 10

    Foster, R. G. et al. Photoreceptors regulating circadian behavior: a mouse model. J. Biol. Rhythms 8, S17–S23 (1993).

    Article  Google Scholar 

  11. 11

    Goto, M. & Ebihara, S. The influence of different light intensities on pineal melatonin content in the retinal degenerate C3H mouse and the normal CBA mouse. Neurosci. Lett. 108, 267–272 (1990).

    CAS  Article  Google Scholar 

  12. 12

    Provencio, I. et al. Visual and circadian responses to light in aged retinally degenerate mice. Vision Res. 34, 1799–1806 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Czeisler, C. A. et al. Suppression of melatonin secretion in some blind patients by exposure to bright light. N. Engl. J. Med. 332, 6–11 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Lockley, S. W. et al. Relationship between melatonin rhythms and visual loss in the blind. J. Clin. Endocrinol. Metab. 82, 3763–3770 (1997).

    CAS  PubMed  Google Scholar 

  15. 15

    Keeler, C. E. Iris movements in blind mice. Am. J. Physiol. 81, 107–112 (1927).

    Article  Google Scholar 

  16. 16

    Trejo, L. J. & Cicerone, C. M. Retinal sensitivity measured by the pupillary light reflex in RCS and albino rats. Vision Res. 22, 1163–1171 (1982).

    CAS  Article  Google Scholar 

  17. 17

    Kovalevsky, G. et al. The intensity of the pupillary light reflex does not correlate with the number of retinal photoreceptor cells. Exp. Neurol. 133, 43–49 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Yoshimura, T. & Ebihara, S. Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+) mice. J. Comp. Physiol. 178, 797–802 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Whiteley, S. J. et al. Changes in the pupillary light reflex of pigmented royal college of surgeons rats with age. Exp. Eye Res. 66, 719–730 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Mrosovsky, N., Foster, R. G. & Salmon, P. A. Thresholds for masking responses to light in three strains of retinally degenerate mice. J. Comp. Physiol. 184, 423–428 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Freedman, M. S. et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284, 502–504 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Lucas, R. J. et al. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284, 505–507 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Nelson, R. J. & Zucker, I. Absence of extra-ocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. Comp. Biochem. Physiol. 69A, 145–148 (1981).

    Article  Google Scholar 

  24. 24

    von Schantz, M., Provencio, I. & Foster, R. Recent developments in circadian photoreception: more than meets the eye. Invest. Ophthalmol. Vis. Sci. 41, 1605–1607 (2000).

    CAS  PubMed  Google Scholar 

  25. 25

    Jacobs, G. H., Neitz, J. & Deegan, J. F. II. Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353, 655–656 (1991).

    CAS  Article  Google Scholar 

  26. 26

    Lythgoe, J. ed. The Ecology of Vision (Oxford Univ. Press, Oxford, 1979).

    Google Scholar 

  27. 27

    Knowles, A., & Dartnall, H. eds., The Photobiology of Vision (Academic, New York, 1977).

    Google Scholar 

  28. 28

    Alpern, M. & Campbell, F. W. The spectral sensitivity of the consensual light reflex. J. Physiol. 164, 478–507 (1962).

    CAS  Article  Google Scholar 

  29. 29

    Alpern, M. & Ohba, N. The effect of bleaching and backgrounds on pupil size. Vision Res. 12, 943–951 (1972).

    CAS  Article  Google Scholar 

  30. 30

    Ohba, N. & Alpern, M. Adaptation of the pupil light reflex. Vision Res. 12, 953–967 (1972).

    CAS  Article  Google Scholar 

  31. 31

    Whiteley, S. J., Litchfield, T. M., Coffey, P. J. & Lund, R. D. Improvement of the pupillary light reflex of Royal College of Surgeons rats following RPE cell grafts. Exp. Neurol. 140, 100–104 (1996).

    CAS  Article  Google Scholar 

  32. 32

    Whiteley, S. J. O. et al. Extent and duration of recovered pupillary light reflex following retinal ganglion cell axon regeneration through peripheral nerve grafts directed to the pretectum in adult rats. Exp. Neurol. 154, 560–572 (1998).

    CAS  Article  Google Scholar 

  33. 33

    Young, M. J. & Lund, R. D. The anatomical substrates subserving the pupillary light reflex in rats: origin of the consensual pupillary response. Neuroscience 62, 481–496 (1994).

    CAS  Article  Google Scholar 

  34. 34

    Bito, L. Z. & Turansky, D. G. Photoactivation of pupillary constriction in the isolated in vitro iris of a mammal (Mesocricetus auratus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 50, 407–413 (1975).

    CAS  Article  Google Scholar 

  35. 35

    Lau, K. C., So, K. F., Campbell, G. & Lieberman, A. R. Pupillary constriction in response to light in rodents, which does not depend on central neural pathways. J. Neurol. Sci. 113, 70–79 (1992).

    CAS  Article  Google Scholar 

  36. 36

    Iwakabe, H., Katsuura, G., Ishibashi, C. & Nakanishi, S. Impairment of pupillary responses and optokinetic nystagmus in the mGluR6-deficient mouse. Neuropharmacology 36, 135–143 (1997).

    CAS  Article  Google Scholar 

  37. 37

    Bridges, C. D. B. The visual pigments of some common laboratory animals. Nature 184, 1727–1728 (1959).

    Article  Google Scholar 

  38. 38

    Sun, H., Macke, J. P. & Nathans, J. Mechanisms of spectral tuning in the mouse green cone pigment. Proc. Natl. Acad. Sci. USA 94, 8860–8865 (1997).

    CAS  Article  Google Scholar 

  39. 39

    Bowes, C. et al. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature 347, 677–680 (1990).

    CAS  Article  Google Scholar 

  40. 40

    Carter-Dawson, L. D., LaVail, M. M. & Sidman, R. L. Differential effect of the rd mutation on rods and cones in the mouse retina. Invest. Ophthalmol. Vis. Sci. 17, 489–498 (1978).

    CAS  PubMed  Google Scholar 

  41. 41

    Soucy, E. et al. A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 21, 481–493 (1998).

    CAS  Article  Google Scholar 

  42. 42

    Wolken, J. J., ed. Light Detectors, Photoreceptors, and Imaging Systems in Nature (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  43. 43

    Partridge, J. C. & De Grip, W. J. A new template for rhodopsin (vitamin A1 based) visual pigments. Vision Res. 31, 619–630 (1991).

    CAS  Article  Google Scholar 

  44. 44

    Selby, C. et al. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. Proc. Natl. Acad. Sci. USA 97, 14607–14702 (2000).

    Article  Google Scholar 

  45. 45

    Provencio, I. et al. A novel human opsin in the inner retina. J. Neurosci. 20, 600–605 (2000).

    CAS  Article  Google Scholar 

  46. 46

    Foster, R. G., Follett, B. K. & Lythgoe, J. N. Rhodopsin-like sensitivity of extra-retinal photoreceptors mediating the photoperiodic response in quail. Nature 313, 50–52 (1985).

    CAS  Article  Google Scholar 

  47. 47

    Bowmaker, J. Kundt's rule: the spectral absorbance of visual pigments in situ and in solution. Vision Res. 12, 529–548 (1972).

    CAS  Article  Google Scholar 

  48. 48

    Provencio, I. & Foster, R. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res. 694, 183–190 (1995).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the BBSRC. The authors thank N. Mrosovsky for comments on an earlier version of this manuscript and S. Thompson and M. Semo for technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lucas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lucas, R., Douglas, R. & Foster, R. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4, 621–626 (2001). https://doi.org/10.1038/88443

Download citation

Further reading