Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adjacent phosphorylation sites on GABAA receptor β subunits determine regulation by cAMP-dependent protein kinase

Abstract

Activation of cAMP-dependent protein kinase (PKA) can enhance or reduce the function of neuronal GABAA receptors, the major sites of fast synaptic inhibition in the brain. This differential regulation depends on PKA-induced phosphorylation of adjacent conserved sites in the receptor β subunits. Phosphorylation of β3 subunit-containing receptors at S408 and S409 enhanced the GABA-activated response, whereas selectively mutating S408 to alanine converted the potentiation into an inhibition, comparable to that of β1 subunits, which are phosphorylated solely on S409. These distinct modes of regulation were interconvertible between β1 and β3 subunits and depended upon the presence of S408 in either subunit. In contrast, β2 subunit-containing receptors were not phosphorylated or affected by PKA. Differential regulation by PKA of postsynaptic GABAA receptors containing different β subunits may have profound effects on neuronal excitability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphorylation by PKA of β2 and β3 subunits in recombinant murine GABAA receptors.
Figure 2: Functional regulation of recombinant murine GABAA receptors containing β2 or β3 subunits by PKA-induced phosphorylation.
Figure 3: Mutation of serines 408 and 409 within the β3 subunit affects the regulation of GABAA receptor function by PKA-induced phosphorylation.
Figure 4: Phosphorylation by PKA of β1(A408S) and β1(A408S,S409A) subunits and the functional regulation of recombinant murine GABAA receptors.

Similar content being viewed by others

References

  1. Rabow, L.E., Russek, S.J. & Farb, D.H. From ion currents to genomic analysis: Recent advances in GABAA receptor research. Synapse 21, 189– 274 (1995)

    Article  CAS  Google Scholar 

  2. Macdonald, R.L. & Olsen, R.W. GABAA receptor channels . Ann. Rev. Neurosci. 17, 569– 602 (1994)

    Article  CAS  Google Scholar 

  3. Schofield, P.R. et al. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328, 221–227 (1987)

    Article  CAS  Google Scholar 

  4. Pritchett, D.B. et al. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338, 582– 585 (1989)

    Article  CAS  Google Scholar 

  5. Davies, P.A. Hanna, M.C. Hales, T.G. & Kirkness E.F. Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit . Nature 385, 820–823 (1997)

    Article  CAS  Google Scholar 

  6. Nayeem, N. M., Green, T. P., Martin, I. L. & Barnard, E.A. Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J. Neurochem. 62, 815– 818 (1994)

    Article  CAS  Google Scholar 

  7. Moss S. J. & Smart T.G. Modulation of amino acid-gated ion channels by protein phosphorylation. Int. Rev. Neurosci. 39, 1–52 (1996)

    Article  CAS  Google Scholar 

  8. Smart, T.G. Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation . Curr. Opin. Neurobiol. 7, 358– 367 (1997)

    Article  CAS  Google Scholar 

  9. Kano, M. & Konnerth, A. Potentiation of GABA-mediated currents by cAMP-dependent protein kinase. Neuroreport 3, 563–566 (1992)

    Article  CAS  Google Scholar 

  10. Feigenspan, A. & Bormann J. Facilitation of GABAergic signaling in the retina by receptors stimulating adenylate cyclase. Proc. Natl. Acad. Sci USA 91, 10893–10897 (1994)

    Article  CAS  Google Scholar 

  11. Veruki, M.L. & Yeh H.H. Vasoactive intestinal polypeptide modulates GABAA receptor function through activation of cyclic AMP. Vis. Neurosci. 11, 899–908 (1994)

    Article  CAS  Google Scholar 

  12. Kapur, J. & Macdonald, R.L. Cyclic AMP-dependent protein kinase enhances hippocampal dentate granule cell GABAA receptor currents. J . Neurophysiol. 76, 2626– 2634 (1996)

    Article  CAS  Google Scholar 

  13. Porter, N.M. et al. Cyclic-AMP dependent protein kinase decreases GABAA receptor current in mouse spinal neurons. Neuron 5, 789– 796 (1996)

    Article  Google Scholar 

  14. Moss, S.J., Smart, T.G., Blackstone, C.D. & Huganir, R.L. Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. Science 257, 661–665 (1992)

    Article  CAS  Google Scholar 

  15. Connolly, C.N., Krishek, B.J., McDonald, B.J., Smart, T.G. & Moss, S.J. Assembly and cell surface expression of heteromeric and homomeric γ-aminobutyric acid type A receptors. J.Biol. Chem. 271, 89–96 (1996)

    Article  CAS  Google Scholar 

  16. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M.Isolation of monoclonal antibodies specific for human c-myc protooncogene product. Mol. Cell Biol. 5, 3610–3616 (1985)

    Article  CAS  Google Scholar 

  17. Buller, A.L., Hastings, G.A., Kirkness, E.F. & Fraser, C.M. Site-directed mutagenesis of N-linked glycosylation sites on the γ-aminobutyric acid type A receptor α1 subunit. Mol. Pharmacol. 46, 858–865 (1994)

    CAS  PubMed  Google Scholar 

  18. Moss, S.J., Gorrie, G., Amato, A. & Smart, T.G. Modulation of GABA A receptors by tyrosine phosphorylation. Nature 377, 344–348 (1995)

    Article  CAS  Google Scholar 

  19. McDonald, B.J. & Moss, S.J. Conserved phosphorylation of the intracellular domains of GABAA receptor β2 and β3 subunits by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin type II-dependent protein kinase. Neuropharmacology 36, 1377 –1385 (1997)

    Article  CAS  Google Scholar 

  20. Angelotti, T.P., Uhler, M.D. & Macdonald, R.L. Enhancement of recombinant γ- aminobutyric acid type A receptor currents by chronic activation of cAMP-dependent protein kinase . Mol. Pharmacol. 44, 1202– 1210 (1993)

    CAS  PubMed  Google Scholar 

  21. Moss, S.J., Doherty, C.A. & Huganir, R.L. Identification of the cAMP-dependent protein kinase and protein kinase C phosphorylation sites within the major intracellular domains of the β1, γ2S and γ2L subunits of the γ-aminobutyric acid type A receptor. J. Biol. Chem. 267, 14470 –14476 (1992)

    CAS  PubMed  Google Scholar 

  22. Benke, D., Fritschy, J.M., Trzeciak, A., Bannwarth, W. & Mohler, H. Distribution, prevalence, and drug binding profile of γ-aminobutyric acid type A receptor subtypes differing in the β-subunit variant. J. Biol. Chem. 269, 27100–27107 (1994)

    CAS  PubMed  Google Scholar 

  23. Heim, R., Cubitt, A.B. & Tsien, R.Y. Improved green fluorescence. Nature 373, 663–664 (1995)

    Article  CAS  Google Scholar 

  24. Wooltorton, J.R.A., Moss, S.J. & Smart, T.G. Pharmacological and physiological characterisation of the murine homomeric β3 GABAA receptors. Eur. J. Neurosci . 9, 2225–2235 (1997)

    Article  CAS  Google Scholar 

  25. Connolly, C.N., Wooltorton, J.R.A., Smart, T.G., & Moss, S.J. Subcellular localization of γ-aminobutyric acid type A receptors is determined by receptor β subunits. Proc. Natl. Acad. Sci. USA 93, 9899–9904 (1996)

    Article  CAS  Google Scholar 

  26. Kano, M., Rexhausen, V., Dreessen, V. & Konnerth, A. Synaptic excitation produces a long-lasting potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356, 601– 604 (1992)

    Article  CAS  Google Scholar 

  27. Kano, M., Kano, M., Fukunaga, K. & Konnerth, A. Ca2+-induced rebound potentiation of gamma-aminobutryic acid-mediated currents requires activation of Ca2+/calmodulin-dependent kinase II. Proc . Natl . Acad . Sci . USA 93, 13351–13356 (1996)

    Article  CAS  Google Scholar 

  28. Kano, M. & Konnerth, A. Potentiation of GABA-mediated currents by cAMP- dependent protein kinase. Neuroreport 3, 563–566 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council, Wellcome Trust and The Royal Society. We thank Alastair Hosie and Philip Thomas for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor G. Smart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, B., Amato, A., Connolly, C. et al. Adjacent phosphorylation sites on GABAA receptor β subunits determine regulation by cAMP-dependent protein kinase. Nat Neurosci 1, 23–28 (1998). https://doi.org/10.1038/223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing