Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Center–periphery organization of human object areas

Abstract

The organizing principles that govern the layout of human object-related areas are largely unknown. Here we propose a new organizing principle in which object representations are arranged according to a central versus peripheral visual field bias. The proposal is based on the finding that building-related regions overlap periphery-biased visual field representations, whereas face-related regions are associated with center-biased representations. Furthermore, the eccentricity maps encompass essentially the entire extent of object-related occipito-temporal cortex, indicating that most object representations are organized with respect to retinal eccentricity. A control experiment ruled out the possibility that the results are due exclusively to unequal feature distribution in these images. We hypothesize that brain regions representing object categories that rely on detailed central scrutiny (such as faces) are more strongly associated with processing of central information, compared to representations of objects that may be recognized by more peripheral information (such as buildings or scenes).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimuli used to map object-selective areas and eccentricity representations (experiments 1A and 2).
Figure 2: Object-selective areas and visual field eccentricity maps.
Figure 3: Activation to different eccentricities in face- and building-related areas.
Figure 4: Simultaneous mapping of object areas and eccentricity representations.
Figure 5: Stimuli used in experiment 3.
Figure 6: Experiment 3, feature distribution experiment.
Figure 7: Large-scale relationship of object-related cortex with center–periphery organization.

Similar content being viewed by others

References

  1. Yarbus, A. L. Eye Movements and Vision (Plenum, New York, 1967).

    Book  Google Scholar 

  2. Gattass, R., Gross, C. G. & Sandell, J. H. Visual topography of V2 in the macaque. J. Comp. Neurol. 201, 519–539 (1981).

    Article  CAS  Google Scholar 

  3. Gattass, R., Sousa, A. P. & Gross, C. G. Visuotopic organization and extent of V3 and V4 of the macaque. J. Neurosci. 8, 1831–1845 (1988).

    Article  CAS  Google Scholar 

  4. DeYoe, E. A. et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 2382–2386 (1996).

    Article  CAS  Google Scholar 

  5. Tootell, R. B. H. et al. Functional analysis of V3A and related areas in human visual cortex. J. Neurosci. 71, 7060–7078 (1997).

    Article  Google Scholar 

  6. Engel, S. A., Glover, G. H. & Wandell, B. A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  Google Scholar 

  7. Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  Google Scholar 

  8. Rosa, M. G. in Extrastriate Cortex in Primates (eds. Rockland, K. S., Kaas, J. & Peters, A.) 127–203 (Plenum, New York, 1997).

    Book  Google Scholar 

  9. Desimone, R. & Ungerleider, L. G. Multiple visual areas in the caudal superior temporal sulcus of the macaque. J. Comp. Neurol. 248, 164–189 (1986).

    Article  CAS  Google Scholar 

  10. Boussaoud, D., Desimone, R. & Ungerleider, L. G. Visual topography of area TEO in the macaque. J. Comp. Neurol. 306, 554–575 (1991).

    Article  CAS  Google Scholar 

  11. Aguirre, G. K., Zarahn, E. & D'Esposito, M. An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21, 373–383 (1998).

    Article  CAS  Google Scholar 

  12. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  Google Scholar 

  13. Ishai, A., Ungerleider, L. G., Martin, A., Schouten, H. L. & Haxby, J. V. Distributed representation of objects in the human ventral visual pathway. Proc. Natl. Acad. Sci. USA 96, 9379–9384 (1999).

    Article  CAS  Google Scholar 

  14. Puce, A., Allison, T., Asgaei, M., Gore, J. C. & McCarthy, G. Differential sensitivity of human visual cortex to faces, letterstrings and textures: a functional magnetic resonance imaging study. J. Neurosci. 16, 5205–5215 (1996).

    Article  CAS  Google Scholar 

  15. Clark, V. P. et al. Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. Neuroimage 4, 1–15 (1996).

    Article  CAS  Google Scholar 

  16. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  17. McCarthy, G., Puce, A., Gore, J. C. & Allison, T. Face specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997).

    Article  CAS  Google Scholar 

  18. Halgren, E. et al. Location of human face-selective cortex with respect to retinotopic areas. Hum. Brain Mapp. 7, 29–37 (1999).

    Article  CAS  Google Scholar 

  19. Epstein, R., Harris, A., Stanley, D. & Kanwisher, N. The parahippocampal place area: recognition, navigation, or encoding? Neuron 23, 115–125 (1999).

    Article  CAS  Google Scholar 

  20. Grill-Spector, K. et al. A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum. Brain Mapp. 6, 316–328 (1998).

    Article  CAS  Google Scholar 

  21. Engel, S. A. et al. fMRI of human visual cortex. Nature 369, 525 (1994).

    Article  CAS  Google Scholar 

  22. Hadjikhani, N., Liu, A. K., Dale, A. M., Cavanagh, P. & Tootell, R. B. Retinotopy and color sensitivity in human visual cortical area V8. Nat. Neurosci. 1, 235–241 (1998).

    Article  CAS  Google Scholar 

  23. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme Medical, New York, 1988).

    Google Scholar 

  24. Haxby, J. V. et al. The effect of face inversion on activity in human neural systems for face and object perception. Neuron 22, 189–199 (1999).

    Article  CAS  Google Scholar 

  25. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P. & Gore, J. C. Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects. Nat. Neurosci. 2, 568–573 (1999).

    Article  CAS  Google Scholar 

  26. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 92, 8135–8139 (1995).

    Article  CAS  Google Scholar 

  27. Hoffman, E. A. & Haxby, J. V. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat. Neurosci. 3, 80–84 (2000).

    Article  CAS  Google Scholar 

  28. Grill-Spector, K. et al. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999).

    Article  CAS  Google Scholar 

  29. Tanaka, K. Neuronal mechanisms of object recognition. Science 262, 685–688 (1993).

    Article  CAS  Google Scholar 

  30. Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996).

    Article  CAS  Google Scholar 

  31. Gross, C. G., Bender, D. B. & Rocha-Miranda, C. E. Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166, 1303–1306 (1969).

    Article  CAS  Google Scholar 

  32. Seltzer, B. & Pandya, D. N. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res. 149, 1–24 (1978).

    Article  CAS  Google Scholar 

  33. Desimone, R., Fleming, J. & Gross, C. G. Prestriate afferents to inferior temporal cortex: an HRP study. Brain Res. 184, 41–55 (1980).

    Article  CAS  Google Scholar 

  34. Baizer, J. S., Ungerleider, L. G. & Desimone, R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J. Neurosci. 11, 168–190 (1991).

    Article  CAS  Google Scholar 

  35. Hikosaka, K. Representation of foveal visual fields in the ventral bank of the superior temporal sulcus in the posterior inferotemporal cortex of the macaque monkey. Behav. Brain Res. 96, 101–113 (1998).

    Article  CAS  Google Scholar 

  36. Gauthier, I., Skudlarski, P., Gore, J. C. & Anderson, A. W. Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3, 191–197 (2000).

    Article  CAS  Google Scholar 

  37. Gauthier, I. et al. The fusiform “face area” is part of a network that processes faces at the individual level. J. Cogn. Neurosci. 12, 495–504 (2000).

    Article  CAS  Google Scholar 

  38. Tootell, R.B. & Hadjikani, N. Where is 'dorsal v4' in human visual cortex? retinopic, topagraphic and functional evidence. Cereb. Cortex 11, 298–311 (2001).

    Article  CAS  Google Scholar 

  39. Grill-Spector, K., Kushnir, T., Hendler, T. & Malach, R. The dynamics of object-selective activation correlate with recognition performance in humans. Nat. Neurosci. 3, 837–843 (2000).

    Article  CAS  Google Scholar 

  40. Grill-Spector, K., Kushnir, T., Edelman, S., Itzchak, Y. & Malach, R. Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21, 191–202 (1998).

    Article  CAS  Google Scholar 

  41. Friston, J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by JSMF 99-28 CN-QUA.05 and Israel Academy 8009 grants. We thank M. Harel for help with the brain flattening, E. Okon for technical help, and V. Levi, S. Peled, D. Ben Bashat, P. Rotshtein and D. Palti for help with running the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Malach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, I., Hasson, U., Avidan, G. et al. Center–periphery organization of human object areas. Nat Neurosci 4, 533–539 (2001). https://doi.org/10.1038/87490

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing