Article | Published:

Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect

Nature Neuroscience volume 4, pages 513518 (2001) | Download Citation

Subjects

Abstract

Motion and stereoscopic depth are fundamental parameters of the structural analysis of visual scenes. Because they are defined by a difference in object position, either over time or across the eyes, a common neural machinery may be used for encoding these attributes. To examine this idea, we analyzed responses of binocular complex cells in the cat striate cortex to stimuli of various intra- and interocular spatial and temporal shifts. We found that most neurons exhibit space–time-oriented response profiles in both monocular and binocular domains. This indicates that these neurons encode motion and depth jointly, and it explains phenomena such as the Pulfrich effect. We also found that the relationship between neuronal tuning of motion and depth conforms to that predicted by the use of motion parallax as a depth cue. These results demonstrate a joint-encoding of motion and depth at an early cortical stage.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    A short-range process in apparent motion. Vision Res. 14, 519–527 (1974).

  2. 2.

    Contributions to the physiology of vision: I. On some remarkable and hitherto unobserved phenomena of binocular vision. Phil. Trans. Royal Soc. Lond. 128, 371–394 (1838).

  3. 3.

    Die Stereoskopie im Dienste der isochromem und herterochromen Photometrie. Naturwissenschaft 10, 553–564 (1922).

  4. 4.

    & Short term visual memory and the Pulfrich phenomenon. Nature 222, 639–641 (1969).

  5. 5.

    & Apparent motion and the Pulfrich effect. Perception 4, 3–18 (1975).

  6. 6.

    & How does binocular delay give information about depth? Vision Res. 19, 523–532 (1979).

  7. 7.

    , & in Frontiers in Visual Science (Cool, S. J. & Smith, E. L., eds.) 373–386 (Springer, Berlin, 1978).

  8. 8.

    , & A physiological correlate of the Pulfrich effect in cortical neurons of the cat. Vision Res. 29, 155–165 (1989).

  9. 9.

    The magnitude of the Pulfrich stereophenomenon as a function of binocular differences in intensity at various levels of illumination. Am. J. Psych. 62, 159–181 (1949).

  10. 10.

    & Visual delay as a function of luminance. Am. J. Psych. 82, 350–358 (1969).

  11. 11.

    The rotating Pulfrich effect, and a new method of determining visual latency differences. Vision Res. 26, 367–372 (1986).

  12. 12.

    & Binocular Vision and Stereopsis (Oxford Univ. Press, New York, 1995).

  13. 13.

    Stereopsis in dynamic visual noise. Nature 250, 781–782 (1974).

  14. 14.

    Dynamic visual noise and the stereophenomenon: interocular time delays, depth and coherent velocities. Percept. Psychophys. 28, 19–27 (1980).

  15. 15.

    A stroboscopic stereophenomenon. Vision Res. 10, 587–593 (1970).

  16. 16.

    Perception of continuity in stroboscopic motion: a temporal frequency analysis. Vision Res. 19, 491–500 (1979).

  17. 17.

    Stereopsis by binocular delay. Nature 248, 363–364 (1974).

  18. 18.

    & A physiological model for motion-stereo integration and a unified explanation of Pulfrich-like phenomena. Vision Res. 37, 1683–1698 (1997).

  19. 19.

    in Nonlinear Vision: Determination of Neural Receptive Fields (Pinter, R. B. & Nabet, B., eds.) 171–220 (CRC, Boca Raton, 1992).

  20. 20.

    , & Neural mechanisms for processing binocular information I. Simple cells. J. Neurophysiol. 82, 891–908 (1999).

  21. 21.

    , & Neural mechanisms for processing binocular information II. Complex cells. J. Neurophysiol. 82, 909–924 (1999).

  22. 22.

    , , & Nonlinear directionally selective subunits in complex cells of cat striate cortex. J. Neurophysiol. 58, 33–65 (1987).

  23. 23.

    , & Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. J. Neurophysiol. 69, 1091–1117 (1993).

  24. 24.

    , , & Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J. Neurosci. 19, 4046–4064 (1999).

  25. 25.

    , in Visual Psychophysics and Physiology (Armington, J. C., Krauskopf, J. & Wooten, B. R., eds.) 417–426 (Academic, New York, 1978).

  26. 26.

    & Monocular motion sensing, binocular motion perception. Vision Res. 29, 1511–1523 (1989).

  27. 27.

    & Dichoptic activation of the early motion system. Vision Res. 33, 1977–1995 (1993).

  28. 28.

    & Binocularity of early motion mechanisms: comments on Georgeson and Shackleton. Vision Res. 32, 187–191 (1992).

  29. 29.

    & No evidence for dichoptic motion sensing: a reply to Carney and Shadlen. Vision Res. 32, 193–198 (1992).

  30. 30.

    & Stereoscopic depth perception at high velocities. Nature 378, 380–383 (1995).

  31. 31.

    & Large scale stereopsis and optic flow: depth enhanced by speed and opponent-motion. Vision Res. 38, 1199–1209 (1998).

  32. 32.

    & Spatio-temporal energy models for the perception of motion. J. Opt. Soc. Am. A2, 284–299 (1985).

  33. 33.

    , & Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Res. 32, 203–218 (1992).

  34. 34.

    , & Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249, 1037–1041 (1990).

  35. 35.

    , & Encoding of binocular disparity by complex cells in the cat's visual cortex. J. Neurophysiol. 77, 2879–2909 (1997).

  36. 36.

    , & Receptive field organization of complex cells in the cat's striate cortex. J. Physiol. (Lond.) 283, 79–99 (1978).

  37. 37.

    & The two-dimensional spatial structure of nonlinear subunits in the receptive fields of complex cells. Vision Res. 30, 249–254 (1990).

  38. 38.

    , , & Space-time spectra of complex cell filters in the macaque monkey: a comparison of results obtained with pseudowhite noise and grating stimuli. Vis. Neurosci. 11, 805–821 (1994).

  39. 39.

    & The binocular organization of complex cells in the cat's visual cortex. J. Neurophysiol. 56, 243–259 (1986).

  40. 40.

    & Motion parallax as an independent cue for depth perception. Perception 8, 125–134 (1979).

  41. 41.

    & Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J. Neurophysiol. 40, 1392–1405 (1977).

  42. 42.

    & Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J. Neurophysiol. 49, 1148–1167 (1983).

  43. 43.

    & Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. J. Neurophysiol. 57, 889–920 (1987).

  44. 44.

    , & Disparity sensitivity of neurons in monkey extrastriate area MST. J. Neurosci. 12, 2478–2492 (1992).

  45. 45.

    , & Integration of motion and stereopsis in middle temporal cortical area of macaques. Nature 373, 609–611 (1995).

  46. 46.

    , & Cortical area MT and the perception of stereoscopic depth. Nature 394, 677–680 (1998).

  47. 47.

    , , & Neumerical Recipes in C 2nd edn. (Cambridge Univ. Press, New York, 1992).

Download references

Acknowledgements

We thank G. DeAngelis for helpful comments and suggestions. This work was supported by research and CORE grants from the National Eye Institute (EY-01175 and EY-03176).

Author information

Author notes

    • Akiyuki Anzai

    Present address: Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA

    • Izumi Ohzawa

    Present address: Department of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan

Affiliations

  1. Group in Vision Science, School of Optometry, University of California, Berkeley, California 94720-2020, USA

    • Akiyuki Anzai
    • , Izumi Ohzawa
    •  & Ralph D. Freeman

Authors

  1. Search for Akiyuki Anzai in:

  2. Search for Izumi Ohzawa in:

  3. Search for Ralph D. Freeman in:

Corresponding author

Correspondence to Ralph D. Freeman.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/87462