Article | Published:

ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis



Glucose-responsive (GR) neurons in the hypothalamus are thought to be critical in glucose homeostasis, but it is not known how they function in this context. Kir6.2 is the pore-forming subunit of KATP channels in many cell types, including pancreatic β-cells and heart. Here we show the complete absence of both functional ATP-sensitive K+ (KATP) channels and glucose responsiveness in the neurons of the ventromedial hypothalamus (VMH) in Kir6.2−/− mice. Although pancreatic α-cells were functional in Kir6.2−/−, the mice exhibited a severe defect in glucagon secretion in response to systemic hypoglycemia. In addition, they showed a complete loss of glucagon secretion, together with reduced food intake in response to neuroglycopenia. Thus, our results demonstrate that KATP channels are important in glucose sensing in VMH GR neurons, and are essential for the maintenance of glucose homeostasis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Ashcroft, F. M. Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97–118 (1988).

  2. 2

    Bernardi, H. et al. ATP-modulated K+ channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release. Proc. Natl. Acad. Sci. USA 90, 1340–1344 (1993).

  3. 3

    Ashford, M. L., Sturgess, N. C., Trout, N. J., Gardner, N. J. & Hales, C. N. Adenosine-5′-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch. 412, 297–304 (1988).

  4. 4

    Spruce, A. E., Standen, N. B. & Stanfield, P. R. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 316, 736–738 (1985).

  5. 5

    Amoroso, S., Schmid-Antomarchi, H., Fosset, M. & Lazdunski, M. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science 247, 852–854 (1990).

  6. 6

    Terzic, A., Jahangir, A. & Kurachi, Y. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am. J. Physiol. 269, C525–545 (1995).

  7. 7

    Cook, D. L. & Hales, C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311, 271–273 (1984).

  8. 8

    Roper, J. & Ashcroft, F. M. Metabolic inhibition and low internal ATP activate K-ATP channels in rat dopaminergic substantia nigra neurones. Pflugers Arch. 430, 44–54 (1995).

  9. 9

    Ohno-Shosaku, T. & Yamamoto, C. Identification of an ATP-sensitive K+ channel in rat cultured cortical neurons. Pflugers Arch. 422, 260–266 (1992).

  10. 10

    Zawar, C., Plant, T. D., Schirra, C., Konnerth, A. & Neumcke, B. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J. Physiol. (Lond.) 514, 327–341 (1999).

  11. 11

    Ashford, M. L., Boden, P. R. & Treherne, J. M. Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch. 415, 479–483 (1990).

  12. 12

    Oomura, Y., Ono, T., Ooyama, H. & Wayner, M. J. Glucose and osmosensitive neurones of the rat hypothalamus. Nature 222, 282–284 (1969).

  13. 13

    Minami, T., Oomura, Y. & Sugimori, M. Electrophysiological properties and glucose responsiveness of guinea-pig ventromedial hypothalamic neurones in vitro. J. Physiol. (Lond.) 380, 127–143 (1986).

  14. 14

    Ashford, M. L., Boden, P. R. & Treherne, J. M. Tolbutamide excites rat glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K+ channels. Br. J. Pharmacol. 101, 531–540 (1990).

  15. 15

    Ashcroft, F. M. & Gribble, F. M. Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci. 21, 288–294 (1998).

  16. 16

    Aguilar-Bryan, L. & Bryan, J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20, 101–135 (1999).

  17. 17

    Seino, S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu. Rev. Physiol. 61, 337–362 (1999).

  18. 18

    Chutkow, W. A., Makielski, J. C., Nelson, D. J., Burant, C. F. & Fan, Z. Alternative splicing of sur2 exon 17 regulates nucleotide sensitivity of the ATP-sensitive potassium channel. J. Biol. Chem. 274, 13656–13665 (1999).

  19. 19

    Karschin, A., Brockhaus, J. & Ballanyi, K. KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situ. J. Physiol. (Lond.) 509, 339–346 (1998).

  20. 20

    Liss, B., Bruns, R. & Roeper, J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J. 18, 833–846 (1999).

  21. 21

    Lee, K., Dixon, A. K., Richardson, P. J. & Pinnock, R. D. Glucose-receptive neurones in the rat ventromedial hypothalamus express KATP channels composed of Kir6.1 and SUR1 subunits. J. Physiol. (Lond.) 515, 439–452 (1999).

  22. 22

    Miki, T. et al. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl. Acad. Sci. USA 95, 10402–10406 (1998).

  23. 23

    Borg, W. P. et al. Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia. J. Clin. Invest. 93, 1677–1682 (1994).

  24. 24

    Borg, W. P., Sherwin, R. S., During, M. J., Borg, M. A. & Shulman, G. I. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44, 180–184 (1995).

  25. 25

    Borg, M. A., Sherwin, R. S., Borg, W. P., Tamborlane, W. V. & Shulman, G. I. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J. Clin. Invest. 99, 361–365 (1997).

  26. 26

    Inagaki, N., et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270, 1166–1170 (1995).

  27. 27

    Sakura, H., Ammala, C., Smith, P. A. Gribble, F. M., Ashcroft, F. M. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett. 377, 338–344 (1995).

  28. 28

    Bokvist, K. et al. Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflugers Arch. 438, 428–436 (1999).

  29. 29

    Suzuki, M., Fujikura, K., Inagaki, N., Seino, S. & Takata, K. Localization of the ATP-sensitive K+ channel subunit Kir6.2 in mouse pancreas. Diabetes 46, 1440–1444 (1997).

  30. 30

    Taborsky, G. J. Jr., Ahren, B. & Havel, P. J. Autonomic mediation of glucagon secretion during hypoglycemia: implications for impaired alpha-cell responses in type 1 diabetes. Diabetes 47, 995–1005 (1998).

  31. 31

    Muller, E. E., Cocchi, D. & Forni, A. A central site for the hyperglycemic action of 2-deoxy-d-glucose in mouse and rat. Life Sci. 10, 1057–1067 (1971).

  32. 32

    Borg, M. A. et al. Chronic hypoglycemia and diabetes impair counterregulation induced by localized 2-deoxy-glucose perfusion of the ventromedial hypothalamus in rats. Diabetes 48, 584–587 (1999).

  33. 33

    Silver, I. A. & Erecinska, M. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol. 79, 1733–1745 (1998).

  34. 34

    Yang, X. J., Kow, L. M., Funabashi, T. & Mobbs, C. V. Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms. Diabetes 48, 1763–1772 (1999).

  35. 35

    Gribble, F. M., Tucker, S. J., Seino, S. & Ashcroft, F. M. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels. Diabetes 47, 1412–1418 (1998).

  36. 36

    Bergen, H. T., Monkman, N. & Mobbs, C. V. Injection with gold thioglucose impairs sensitivity to glucose: evidence that glucose-responsive neurons are important for long-term regulation of body weight. Brain Res. 734, 332–336 (1996).

  37. 37

    Lambolez, B., Audinat, E., Bochet, P., Crepel, F. & Rossier, J. AMPA receptor subunits expressed by single Purkinje cells. Neuron 9, 247–258 (1992).

  38. 38

    Elmquist, J. K., Elias, C. F. & Saper, C. B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22, 221–232 (1999).

  39. 39

    Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D. & Ashford, M. L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521–525 (1997).

  40. 40

    Stephens, T. W. et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377, 530–532 (1995).

  41. 41

    Steffens, A. B., Strubbe, J. H., Balkan, B. & Scheurink, J. W. Neuroendocrine mechanisms involved in regulation of body weight, food intake and metabolism. Neurosci. Biobehav. Rev. 14, 305–313 (1990).

  42. 42

    Levin, B. E., Dunn-Meynell, A. A. & Routh, V. H. Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. Am. J. Physiol. 276, R1223–1231 (1999).

  43. 43

    Lynch, R. M., Tompkins, L., Brooks, H. L., Dunn-Meynell, A. A. & Levin, B. E. Localization of glucokinase gene expression in the rat brain. Diabetes 49, 693–700 (2000).

  44. 44

    Karschin, C., Ecke, C., Ashcroft, F. M. & Karschin, A. Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett. 401, 59–64 (1997).

  45. 45

    Dunn-Meynell, A. A., Rawson, N. E. & Levin, B. E. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res. 814, 41–54 (1998).

  46. 46

    Pessin, J. E. & Bell, G. I. Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu. Rev. Physiol. 54, 911–930 (1992).

  47. 47

    Matschinsky, F. M., Glaser, B., Magnuson, M. A. Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes 47, 307–315 (1998).

  48. 48

    Leloup, C. et al. Glucose transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Res. 638, 221–226 (1994).

  49. 49

    Schwartz, M. W., Woods, S. C., Porte, D. Jr., Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

  50. 50

    Salehi, A., Chen, D., H. Kanson, R., Nordin, G. & Lundquist, I. Gastrectomy induces impaired insulin and glucagon secretion: evidence for a gastro-insular axis in mice. J. Physiol. (Lond.) 514, 579–591 (1999).

Download references


This work was supported by Grants-in-Aid for Creative Basic Research (10NP0201) and for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan; by Research Grants from the Ministry of Health and Welfare, Japan, by grants from Novo Nordisk Pharma, the Yamanouchi Foundation for Research on Metabolic Disorders, the Wellcome Trust; and the Medical Research Council. J.R. is supported by the Monsanto Senior Research Fellowship; B.L., by the Todd-Bird Junior Research Fellowship and the Blaschko Visiting Research Scholarship.

Author information

Correspondence to Susumu Seino.

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Further reading

Figure 1: Blood glucose levels, epinephrine and glucagon secretion in Kir6.2+/+ and Kir6.2−/− mice.
Figure 2: Electrophysiological properties and glucose responsiveness of VMH neurons.
Figure 3: Characterization of KATP channels in VMH neurons of Kir6.2+/+ and Kir6.2−/−.
Figure 4: Single-cell RT-PCR of KATP channel subunits in VMH neurons in Kir6.2+/+.
Figure 5: The effects of 2DG, leptin and NPY on food intake in Kir6.2+/+ and Kir6.2−/− mice.