Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis

Abstract

Glucose-responsive (GR) neurons in the hypothalamus are thought to be critical in glucose homeostasis, but it is not known how they function in this context. Kir6.2 is the pore-forming subunit of KATP channels in many cell types, including pancreatic β-cells and heart. Here we show the complete absence of both functional ATP-sensitive K+ (KATP) channels and glucose responsiveness in the neurons of the ventromedial hypothalamus (VMH) in Kir6.2−/− mice. Although pancreatic α-cells were functional in Kir6.2−/−, the mice exhibited a severe defect in glucagon secretion in response to systemic hypoglycemia. In addition, they showed a complete loss of glucagon secretion, together with reduced food intake in response to neuroglycopenia. Thus, our results demonstrate that KATP channels are important in glucose sensing in VMH GR neurons, and are essential for the maintenance of glucose homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blood glucose levels, epinephrine and glucagon secretion in Kir6.2+/+ and Kir6.2−/− mice.
Figure 2: Electrophysiological properties and glucose responsiveness of VMH neurons.
Figure 3: Characterization of KATP channels in VMH neurons of Kir6.2+/+ and Kir6.2−/−.
Figure 4: Single-cell RT-PCR of KATP channel subunits in VMH neurons in Kir6.2+/+.
Figure 5: The effects of 2DG, leptin and NPY on food intake in Kir6.2+/+ and Kir6.2−/− mice.

Similar content being viewed by others

References

  1. Ashcroft, F. M. Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97–118 (1988).

    Article  CAS  Google Scholar 

  2. Bernardi, H. et al. ATP-modulated K+ channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release. Proc. Natl. Acad. Sci. USA 90, 1340–1344 (1993).

    Article  CAS  Google Scholar 

  3. Ashford, M. L., Sturgess, N. C., Trout, N. J., Gardner, N. J. & Hales, C. N. Adenosine-5′-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch. 412, 297–304 (1988).

    Article  CAS  Google Scholar 

  4. Spruce, A. E., Standen, N. B. & Stanfield, P. R. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 316, 736–738 (1985).

    Article  CAS  Google Scholar 

  5. Amoroso, S., Schmid-Antomarchi, H., Fosset, M. & Lazdunski, M. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science 247, 852–854 (1990).

    Article  CAS  Google Scholar 

  6. Terzic, A., Jahangir, A. & Kurachi, Y. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am. J. Physiol. 269, C525–545 (1995).

    Article  CAS  Google Scholar 

  7. Cook, D. L. & Hales, C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311, 271–273 (1984).

    Article  CAS  Google Scholar 

  8. Roper, J. & Ashcroft, F. M. Metabolic inhibition and low internal ATP activate K-ATP channels in rat dopaminergic substantia nigra neurones. Pflugers Arch. 430, 44–54 (1995).

    Article  CAS  Google Scholar 

  9. Ohno-Shosaku, T. & Yamamoto, C. Identification of an ATP-sensitive K+ channel in rat cultured cortical neurons. Pflugers Arch. 422, 260–266 (1992).

    Article  CAS  Google Scholar 

  10. Zawar, C., Plant, T. D., Schirra, C., Konnerth, A. & Neumcke, B. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J. Physiol. (Lond.) 514, 327–341 (1999).

    Article  CAS  Google Scholar 

  11. Ashford, M. L., Boden, P. R. & Treherne, J. M. Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch. 415, 479–483 (1990).

    Article  CAS  Google Scholar 

  12. Oomura, Y., Ono, T., Ooyama, H. & Wayner, M. J. Glucose and osmosensitive neurones of the rat hypothalamus. Nature 222, 282–284 (1969).

    Article  CAS  Google Scholar 

  13. Minami, T., Oomura, Y. & Sugimori, M. Electrophysiological properties and glucose responsiveness of guinea-pig ventromedial hypothalamic neurones in vitro. J. Physiol. (Lond.) 380, 127–143 (1986).

    Article  CAS  Google Scholar 

  14. Ashford, M. L., Boden, P. R. & Treherne, J. M. Tolbutamide excites rat glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K+ channels. Br. J. Pharmacol. 101, 531–540 (1990).

    Article  CAS  Google Scholar 

  15. Ashcroft, F. M. & Gribble, F. M. Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci. 21, 288–294 (1998).

    Article  CAS  Google Scholar 

  16. Aguilar-Bryan, L. & Bryan, J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20, 101–135 (1999).

    CAS  PubMed  Google Scholar 

  17. Seino, S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu. Rev. Physiol. 61, 337–362 (1999).

    Article  CAS  Google Scholar 

  18. Chutkow, W. A., Makielski, J. C., Nelson, D. J., Burant, C. F. & Fan, Z. Alternative splicing of sur2 exon 17 regulates nucleotide sensitivity of the ATP-sensitive potassium channel. J. Biol. Chem. 274, 13656–13665 (1999).

    Article  CAS  Google Scholar 

  19. Karschin, A., Brockhaus, J. & Ballanyi, K. KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situ. J. Physiol. (Lond.) 509, 339–346 (1998).

    Article  CAS  Google Scholar 

  20. Liss, B., Bruns, R. & Roeper, J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J. 18, 833–846 (1999).

    Article  CAS  Google Scholar 

  21. Lee, K., Dixon, A. K., Richardson, P. J. & Pinnock, R. D. Glucose-receptive neurones in the rat ventromedial hypothalamus express KATP channels composed of Kir6.1 and SUR1 subunits. J. Physiol. (Lond.) 515, 439–452 (1999).

    Article  CAS  Google Scholar 

  22. Miki, T. et al. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl. Acad. Sci. USA 95, 10402–10406 (1998).

    Article  CAS  Google Scholar 

  23. Borg, W. P. et al. Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia. J. Clin. Invest. 93, 1677–1682 (1994).

    Article  CAS  Google Scholar 

  24. Borg, W. P., Sherwin, R. S., During, M. J., Borg, M. A. & Shulman, G. I. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44, 180–184 (1995).

    Article  CAS  Google Scholar 

  25. Borg, M. A., Sherwin, R. S., Borg, W. P., Tamborlane, W. V. & Shulman, G. I. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J. Clin. Invest. 99, 361–365 (1997).

    Article  CAS  Google Scholar 

  26. Inagaki, N., et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270, 1166–1170 (1995).

    Article  CAS  Google Scholar 

  27. Sakura, H., Ammala, C., Smith, P. A. Gribble, F. M., Ashcroft, F. M. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett. 377, 338–344 (1995).

    Article  CAS  Google Scholar 

  28. Bokvist, K. et al. Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflugers Arch. 438, 428–436 (1999).

    CAS  PubMed  Google Scholar 

  29. Suzuki, M., Fujikura, K., Inagaki, N., Seino, S. & Takata, K. Localization of the ATP-sensitive K+ channel subunit Kir6.2 in mouse pancreas. Diabetes 46, 1440–1444 (1997).

    Article  CAS  Google Scholar 

  30. Taborsky, G. J. Jr., Ahren, B. & Havel, P. J. Autonomic mediation of glucagon secretion during hypoglycemia: implications for impaired alpha-cell responses in type 1 diabetes. Diabetes 47, 995–1005 (1998).

    Article  CAS  Google Scholar 

  31. Muller, E. E., Cocchi, D. & Forni, A. A central site for the hyperglycemic action of 2-deoxy-d-glucose in mouse and rat. Life Sci. 10, 1057–1067 (1971).

    Article  CAS  Google Scholar 

  32. Borg, M. A. et al. Chronic hypoglycemia and diabetes impair counterregulation induced by localized 2-deoxy-glucose perfusion of the ventromedial hypothalamus in rats. Diabetes 48, 584–587 (1999).

    Article  CAS  Google Scholar 

  33. Silver, I. A. & Erecinska, M. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol. 79, 1733–1745 (1998).

    Article  CAS  Google Scholar 

  34. Yang, X. J., Kow, L. M., Funabashi, T. & Mobbs, C. V. Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms. Diabetes 48, 1763–1772 (1999).

    Article  CAS  Google Scholar 

  35. Gribble, F. M., Tucker, S. J., Seino, S. & Ashcroft, F. M. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels. Diabetes 47, 1412–1418 (1998).

    Article  CAS  Google Scholar 

  36. Bergen, H. T., Monkman, N. & Mobbs, C. V. Injection with gold thioglucose impairs sensitivity to glucose: evidence that glucose-responsive neurons are important for long-term regulation of body weight. Brain Res. 734, 332–336 (1996).

    Article  CAS  Google Scholar 

  37. Lambolez, B., Audinat, E., Bochet, P., Crepel, F. & Rossier, J. AMPA receptor subunits expressed by single Purkinje cells. Neuron 9, 247–258 (1992).

    Article  CAS  Google Scholar 

  38. Elmquist, J. K., Elias, C. F. & Saper, C. B. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22, 221–232 (1999).

    Article  CAS  Google Scholar 

  39. Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D. & Ashford, M. L. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521–525 (1997).

    Article  CAS  Google Scholar 

  40. Stephens, T. W. et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377, 530–532 (1995).

    Article  CAS  Google Scholar 

  41. Steffens, A. B., Strubbe, J. H., Balkan, B. & Scheurink, J. W. Neuroendocrine mechanisms involved in regulation of body weight, food intake and metabolism. Neurosci. Biobehav. Rev. 14, 305–313 (1990).

    Article  CAS  Google Scholar 

  42. Levin, B. E., Dunn-Meynell, A. A. & Routh, V. H. Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. Am. J. Physiol. 276, R1223–1231 (1999).

    CAS  PubMed  Google Scholar 

  43. Lynch, R. M., Tompkins, L., Brooks, H. L., Dunn-Meynell, A. A. & Levin, B. E. Localization of glucokinase gene expression in the rat brain. Diabetes 49, 693–700 (2000).

    Article  CAS  Google Scholar 

  44. Karschin, C., Ecke, C., Ashcroft, F. M. & Karschin, A. Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett. 401, 59–64 (1997).

    Article  CAS  Google Scholar 

  45. Dunn-Meynell, A. A., Rawson, N. E. & Levin, B. E. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res. 814, 41–54 (1998).

    Article  CAS  Google Scholar 

  46. Pessin, J. E. & Bell, G. I. Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu. Rev. Physiol. 54, 911–930 (1992).

    Article  CAS  Google Scholar 

  47. Matschinsky, F. M., Glaser, B., Magnuson, M. A. Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes 47, 307–315 (1998).

    Article  CAS  Google Scholar 

  48. Leloup, C. et al. Glucose transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Res. 638, 221–226 (1994).

    Article  CAS  Google Scholar 

  49. Schwartz, M. W., Woods, S. C., Porte, D. Jr., Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    Article  CAS  Google Scholar 

  50. Salehi, A., Chen, D., H. Kanson, R., Nordin, G. & Lundquist, I. Gastrectomy induces impaired insulin and glucagon secretion: evidence for a gastro-insular axis in mice. J. Physiol. (Lond.) 514, 579–591 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Creative Basic Research (10NP0201) and for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan; by Research Grants from the Ministry of Health and Welfare, Japan, by grants from Novo Nordisk Pharma, the Yamanouchi Foundation for Research on Metabolic Disorders, the Wellcome Trust; and the Medical Research Council. J.R. is supported by the Monsanto Senior Research Fellowship; B.L., by the Todd-Bird Junior Research Fellowship and the Blaschko Visiting Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Seino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miki, T., Liss, B., Minami, K. et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4, 507–512 (2001). https://doi.org/10.1038/87455

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87455

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing