Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein mobility and GABA-induced conformational changes in GABAA receptor pore-lining M2 segment

Abstract

Protein movements underlying ligand-gated ion channel activation are poorly understood. Here we used disulfide bond trapping to examine the proximity and mobility of cysteines substituted for aligned GABAA receptor α1 and β1 M2 segment channel-lining residues in resting and activated receptors. With or without GABA, disulfide bonds formed at α1N275C/β1E270C (20′) and α1S272C/β1H267C (17′), near the extracellular end, suggesting that this end is more mobile and/or flexible than the rest of the segment. Near the middle of M2, at α1T261C/β1T256C (6′), a disulfide bond formed only in the presence of GABA and locked the channels open. Channel activation must involve an asymmetric rotation of two adjacent subunits toward each other. This would move aligned engineered cysteines on different subunits into proximity and allow disulfide bond formation without blocking conduction. Asymmetric rotation of M2 segments is probably a common gating mechanism in other ligand-gated ion channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of oxidation and reduction on wild-type α1β1 GABAA receptors (a) Aligned channel-lining residues in the α1 and β1 M2 membrane-spanning segments.
Figure 2: Disulfide bonds form in α1N20′Cβ1E20′C receptors.
Figure 3: Disulfide bonds form in α1S17′Cβ1H17′C and in α1β1H17′C receptors.
Figure 4: In α1T6′Cβ1T6′C, co-application of Cu:phen and GABA induces formation of a disulfide bond that locks the channels in an open state.
Figure 5: Asymmetric rotation of adjacent β subunits upon channel opening.

Similar content being viewed by others

References

  1. Macdonald, R. L. & Olsen, R. W. GABAA receptor channels. Annu. Rev. Neurosci. 17, 569–602 (1994).

    Article  CAS  Google Scholar 

  2. Karlin, A. & Akabas, M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15, 1231–1244 (1995).

    Article  CAS  Google Scholar 

  3. Rabow, L. E., Russek, S. J. & Farb, D. H. From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse 21, 189–274 (1995).

    Article  CAS  Google Scholar 

  4. Gage, P. W. Signal transmission in ligand-gated receptors. Immunol. Cell Biol. 76, 436–440 (1998).

    Article  CAS  Google Scholar 

  5. Sieghart, W. et al. Structure and subunit composition of GABA(A) receptors. Neurochem. Int. 34, 379–385 (1999).

    Article  CAS  Google Scholar 

  6. Krasowski, M. D. & Harrison, N. L. General anaesthetic actions on ligand-gated ion channels. Cell Mol. Life Sci. 55, 1278–1303 (1999).

    Article  CAS  Google Scholar 

  7. Tretter, V., Ehya, N., Fuchs, K. & Sieghart, W. Stoichiometry and assembly of a recombinant GABAA receptor subtype. J. Neurosci. 17, 2728–2737 (1997).

    Article  CAS  Google Scholar 

  8. Horenstein, J. & Akabas, M. H. Location of a high affinity Zn2+ binding site in the channel of α1β1 gamma-aminobutyric acid A receptors. Mol. Pharmacol. 53, 870–877 (1998).

    CAS  PubMed  Google Scholar 

  9. Chang, Y., Wang, R., Barot, S. & Weiss, D. S. Stoichiometry of a recombinant GABAA receptor. J. Neurosci. 16, 5415–5424 (1996).

    Article  CAS  Google Scholar 

  10. Farrar, S. J., Whiting, P. J., Bonnert, T. P. & McKernan, R. M. Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J. Biol. Chem. 274, 10100–10104 (1999).

    Article  CAS  Google Scholar 

  11. Xu, M. & Akabas, M. H. Identification of channel-lining residues in the M2 membrane-spanning segment of the GABAA receptor alpha1 subunit. J. Gen. Physiol. 107, 195–205 (1996).

    Article  CAS  Google Scholar 

  12. Imoto, K. et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648 (1988).

    Article  CAS  Google Scholar 

  13. Charnet, P. et al. An open-channel blocker interacts with adjacent turns of alpha-helices in the nicotinic acetylcholine receptor. Neuron 2, 87–95 (1990).

    Article  Google Scholar 

  14. Unwin, N. Nicotinic acetylcholine receptor at 9 Å resolution. J. Mol. Biol. 229, 1101–1124 (1993).

    Article  CAS  Google Scholar 

  15. White, B. H. & Cohen, J. B. Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist. J. Biol. Chem. 267, 15770–15783 (1992).

    CAS  PubMed  Google Scholar 

  16. Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 (1995).

    Article  CAS  Google Scholar 

  17. Careaga, C. L. & Falke, J. J. Thermal motions of surface alpha-helices in the d-galactose chemosensory receptor. Detection by disulfide trapping. J. Mol. Biol. 226, 1219–1235 (1992).

    Article  CAS  Google Scholar 

  18. Yu, H., Kono, M., McKee, T. D. & Oprian, D. D. A general method for mapping tertiary contacts between amino acid residues in membrane-embedded proteins. Biochemistry 34, 14963–14969 (1995).

    Article  CAS  Google Scholar 

  19. Wu, J. & Kaback, H. R. A general method for determining helix packing in membrane proteins in situ: helices I and II are close to helix VII in the lactose permease of Escherichia coli. Proc. Natl. Acad. Sci. USA 93, 14498–14502 (1996).

    Article  CAS  Google Scholar 

  20. Krovetz, H. S., VanDongen, H. M. & VanDongen, A. M. Atomic distance estimates from disulfides and high-affinity metal-binding sites in a K+ channel pore. Biophys. J. 72, 117–126 (1997).

    Article  CAS  Google Scholar 

  21. Amato, A., Connolly, C. N., Moss, S. J. & Smart, T. G. Modulation of neuronal and recombinant GABAA receptors by redox reagents. J. Physiol. (Lond.) 517, 35–50 (1999).

    Article  CAS  Google Scholar 

  22. Pan, Z., Zhang, X. & Lipton, S. A. Redox modulation of recombinant human GABA(A) receptors. Neuroscience 98, 333–338 (2000).

    Article  CAS  Google Scholar 

  23. Hamilton, S. L., McLaughlin, M. & Karlin, A. Formation of disulfide-linked oligomers of acetylcholine receptor in membrane from Torpedo electric tissue. Biochemistry 18, 155–163 (1979).

    Article  CAS  Google Scholar 

  24. Xu, M., Covey, D. F. & Akabas, M. H. Interaction of picrotoxin with GABAA receptor channel-lining residues probed in cysteine mutants. Biophys. J. 69, 1858–1867 (1995).

    Article  CAS  Google Scholar 

  25. Gurley, D., Amin, J., Ross, P. C., Weiss, D. S. & White, G. Point mutations in the M2 region of the alpha, beta, or gamma subunit of the GABAA channel that abolish block by picrotoxin. Receptors Channels 3, 13–20 (1995).

    CAS  PubMed  Google Scholar 

  26. Twyman, R. E., Green, R. M. & MacDonald, R. L. Kinetics of open channel block by penicillin of single GABAA receptor channels from mouse spinal cord neurones in culture. J. Physiol. (Lond.) 445, 97–127 (1992).

    Article  CAS  Google Scholar 

  27. Wooltorton, J. R., McDonald, B. J., Moss, S. J. & Smart, T. G. Identification of a Zn2+ binding site on the murine GABAA receptor complex: dependence on the second transmembrane domain of beta subunits. J. Physiol. (Lond.) 505, 633–640 (1997).

    Article  CAS  Google Scholar 

  28. Sigel, E., Baur, R., Trube, G., Mohler, H. & Malherbe, P. The effect of subunit composition of rat brain GABAA receptors on channel function. Neuron 5, 703–711 (1990).

    Article  CAS  Google Scholar 

  29. Connolly, C. N., Krishek, B. J., McDonald, B. J., Smart, T. G. & Moss, S. J. Assembly and cell surface expression of heteromeric and homomeric gamma- aminobutyric acid type A receptors. J. Biol. Chem. 271, 89–96 (1996).

    Article  CAS  Google Scholar 

  30. Sigel, E., Baur, R., Kellenberger, S. & Malherbe, P. Point mutations affecting antagonist affinity and agonist dependent gating of GABAA receptor channels. EMBO J. 11, 2017–2023 (1992).

    Article  CAS  Google Scholar 

  31. Amin, J. & Weiss, D. S. GABAA receptor needs two homologous domains of the beta-subunit for activation by GABA but not by pentobarbital. Nature 366, 565–569 (1993).

    Article  CAS  Google Scholar 

  32. Smith, G. B. & Olsen, R. W. Identification of a [3H]muscimol photoaffinity substrate in the bovine gamma-aminobutyric acidA receptor alpha subunit. J. Biol. Chem. 269, 20380–20387 (1994).

    CAS  PubMed  Google Scholar 

  33. Boileau, A. J., Evers, A. R., Davis, A. F. & Czajkowski, C. Mapping the agonist binding site of the GABAA receptor: evidence for a beta-strand. J. Neurosci. 19, 4847–4854 (1999).

    Article  CAS  Google Scholar 

  34. Wilson, G. G. & Karlin, A. The location of the gate in the acetylcholine receptor channel. Neuron 20, 1269–1281 (1998).

    Article  CAS  Google Scholar 

  35. Higaki, J. H., Fletterick, R. J. & Craik, C. S. Engineered metalloregulation in enzymes. Trends Biochem. Sci. 17, 100–104 (1992).

    Article  CAS  Google Scholar 

  36. England, P. M., Zhang, Y., Dougherty, D. A. & Lester, H. A. Backbone mutations in transmembrane domains of a ligand-gated ion channel: implications for the mechanism of gating. Cell 96, 89–98 (1999).

    Article  CAS  Google Scholar 

  37. Zhang, H. & Karlin, A. Contribution of the beta subunit M2 segment to the ion-conducting pathway of the acetylcholine receptor. Biochemistry 37, 7952–7964 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health NS30808 (M.H.A.), GM61925 (M.H.A.) and NS34727 (C.C.), and a Burroughs Wellcome Fund New Investigator Award (C.C.). We thank A. Finkelstein for comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myles H. Akabas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horenstein, J., Wagner, D., Czajkowski, C. et al. Protein mobility and GABA-induced conformational changes in GABAA receptor pore-lining M2 segment. Nat Neurosci 4, 477–485 (2001). https://doi.org/10.1038/87425

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87425

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing