Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The two thyroid hormone receptor genes have opposite effects on estrogen-stimulated sex behaviors

Abstract

The two genes coding for thyroid hormone receptors (TR) α 1 and β have opposite effects on female sex behaviors. Deletion of TRα 1 reduced them, whereas deletion of TRβ actually increased them. These results could not be attributed to altered levels of hormones in the blood, general alterations in estrogen responsiveness or altered general activity. Instead, they indicate a previously unknown molecular mechanism upon which the two TR genes exert opposite influences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of estrogen (estradiol benzoate, EB) treatment on female sexual behaviors in TRβ and TRα1 gene-disrupted mice.
Figure 2: Differences in behavior of gene knockout female mice were not due to differential approach behaviors by the males.
Figure 3: Numbers of vasopressin- (VP) and oxytocin- (OT) immunoreactive cells in the preoptic area and hypothalamus of TRβ gene-disrupted mice (TRβKO) compared with wild-type controls.

Similar content being viewed by others

References

  1. Pfaff, D.W. Drive: Neural and Molecular Mechanisms for Sexual Motivation (MIT Press, Cambridge, Massachusetts, 1999).

    Book  Google Scholar 

  2. Zhu, Y., Yen, P., Chin, W. & Pfaff, D. Estrogen and thyroid hormone interaction on regulation of gene expression. Proc. Natl. Acad. Sci. USA 93, 12587–12592 (1996).

    Article  CAS  Google Scholar 

  3. Dellovade, T., Kia, H., Zhu, Y.-S. & Pfaff, D. Thyroid hormone coadministration inhibits the estrogen-stimulated elevation of preproenkephalin mRNA in female rat hypothalamic neurons. Neuroendocrinology 70, 168–174 (1999).

    Article  CAS  Google Scholar 

  4. Dellovade, T., Zhu, Y. & Pfaff, D. Thyroid hormones and estrogen affect oxytocin gene expression in hypothalamic neurons. J. Neuroendocrinol. 11, 1–10 (1999).

    Article  CAS  Google Scholar 

  5. Dellovade, T., Zhu, Y., Krey, L. & Pfaff, D. Thyroid hormone and estrogen interact to regulate behavior. Proc. Natl. Acad. Sci. USA 93, 12581–12586 (1996).

    Article  CAS  Google Scholar 

  6. Morgan, M. & Pfaff, D. Thyroid hormones reduce lordosis behavior in female mice. Horm. Behav. (in press).

  7. Dahl, G., Evans, N., Thrun, L. & Karsch, F. Thyroxine is permissive to seasonal transitions in reproductive neuroendocrine activity in the ewe. Biol. Reprod. 52, 690–696 (1995).

    Article  CAS  Google Scholar 

  8. Webster, J., Moenter, S., Barrell, G., Lehman, M. & Karsch, J. Role of the thyroid gland in seasonal reproduction. III. Thyroidectomy blocks seasonal suppression of gonadotropin-releasing hormone secretion in sheep. Endocrinology 129, 1635–1643 (1991).

    Article  CAS  Google Scholar 

  9. Moenter, S., Woodfill, C. & Karsch, F. Role of the thyroid gland in seasonal reproduction: Thyroidectomy blocks seasonal suppression of reproductive neuroendocrine activity in ewes. Endocrinology 128, 1337–1344 (1991).

    Article  CAS  Google Scholar 

  10. Thrun, L., Dahl, G., Evans, N. & Karsch, F. Acritical period for thyroid hormone action on seasonal changes in reproductive neuroendocrine function in the ewe. Endocrinology 138, 3402–3409 (1997).

    Article  CAS  Google Scholar 

  11. Webster, J., Moenter, S., Woodfill, C. & Karsch, J. Role of the thyroid gland in seasonal reproduction. II. Thyroxine allows a season-specific suppression of gonadotropin secretion in sheep. Endocrinology 129, 176–183 (1991).

    Article  CAS  Google Scholar 

  12. Goldsmith, A. & Nichols, T. Thyroidectomy prevents the development of photorefractoriness and the associated rise in plasma prolactin in starlings. Gen. Comp. Endocrinol. 54, 256–263 (1984).

    Article  CAS  Google Scholar 

  13. Goldsmith, A. & Nichols, T. Thyroxine induces photorefractoriness and stimulates prolactin secretion in European starlings (Sturnus vulgaris) J. Endocrinol. 101, 1–3 (1984).

    Article  Google Scholar 

  14. Johansson, C., Vennström, B. & Thorén, P. Evidence that decreased heart rate in thyroid hormone receptor α1–deficient mice is an intrinsic defect. Am. J. Physiol. 275, R640–646 (1998).

    CAS  PubMed  Google Scholar 

  15. Johansson, C., Gothe, S., Forrest, D., Vennström, B. & Thorén, P. Cardiovascular phenotype and temperature control in mice lacking thyroid hormone receptor-beta or both alpha1 and beta. Am. J. Physiol. 276, H2006–2012 (1999).

    Article  CAS  Google Scholar 

  16. Forrest, D. et al. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor β: evidence for tissue-specific modulation of receptor function. EMBO J. 15, 3006–3015 (1996).

    Article  CAS  Google Scholar 

  17. Wikstrom, L. et al. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor EMBO J. 17, 455–461 (1998).

    Article  CAS  Google Scholar 

  18. Rusch, A., Erway, L., Oliver, D., Vennstrom, B. & Forrest, D. Thyroid hormone receptordependent expression of a potassium conductance in inner hair cells at the onset of hearing. Proc. Natl. Acad. Sci. USA 95, 15758–15762 (1998).

    Article  CAS  Google Scholar 

  19. Sandhofer, C., Schwartz, H., Mariash, C., Forrest, D. & Oppenheimer, J. Beta receptor isoforms are not essential for thyroid hormone-dependent acceleration of PCP-2 and myelin basic protein gene expression in the developing brains of neonatal mice. Mol. Cell. Endocrinol. 137, 109–115 (1998).

    Article  CAS  Google Scholar 

  20. Pedersen, C., Jirikowski, G., Caldwell, J. & Insel, T. Oxytocin in maternal, sexual and social behavior. Ann. NY Acad. Sci. 652 (1992).

  21. Carter, C.S., Lederhendler, I. & Kirkpatrick, B. The integrative neurobiology of affiliation. Introduction Ann. NY Acad. Sci. 807, xiii–xviii (1997).

    Article  Google Scholar 

  22. Young, L., Wang, Z. & Insel, T. Neuroendocrine bases of monogamy. Trends Neurosci. 21, 71–75 (1998).

    Article  CAS  Google Scholar 

  23. Fahrbach, S., Morrell, J. & Pfaff, D. Effect of varying the duration of pre-test cage habituation on oxytocin induction of short-latency maternal behavior. Physiol. Behav. 37, 135–139 (1986).

    Article  CAS  Google Scholar 

  24. Neumann, I.D. et al. Attenuated neuroendocrine responses to emotional and physical stressors in pregnant rats involve adenohypophysial changes. J. Physiol. (Lond.) 508, 289–300 (1998).

    Article  CAS  Google Scholar 

  25. Neumann, I., Douglas, A., Pittman, Q., Russell, J. & Landgraf, R. Oxytocin released within the supraoptic nucleus of the rat brain by positive feedback action is involved in parturition-related events. J. Neuroendocrinol. 8, 227–233 (1996).

    Article  CAS  Google Scholar 

  26. Gauthier, K. et al. Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development. EMBO J. 18, 623–631 (1999).

    Article  CAS  Google Scholar 

  27. Göthe, S. et al. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth and bone maturation. Genes Dev. 13, 1329–1341 (1999).

    Article  Google Scholar 

  28. Mangelsdorf, D. et al. . Overview: the nuclear receptor superfamily: the second decade. Cell 83, 835–840 (1995).

    Article  CAS  Google Scholar 

  29. Horlein, A. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995).

    Article  CAS  Google Scholar 

  30. Cohen, R., Wondisford, F. & Hollenberg, A. Two separate NCoR (Nuclear Receptor Corepressor) interaction domains mediate corepressor action on thyroid hormone response elements. Mol. Endocrinol. 12, 1567–1581 (1998).

    Article  CAS  Google Scholar 

  31. Barros, A. C. et al. Absence of thyroid hormone receptor beta – retinoid X receptor interactions in auditory function and in the pituitary–thyroid axis. Neuroreport 9, 2933–2937 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald W. Pfaff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dellovade, T., Chan, J., Vennstrom, B. et al. The two thyroid hormone receptor genes have opposite effects on estrogen-stimulated sex behaviors. Nat Neurosci 3, 472–475 (2000). https://doi.org/10.1038/74846

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing