Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large-scale oscillatory calcium waves in the immature cortex

Abstract

Two-photon imaging of large neuronal networks in cortical slices of newborn rats revealed synchronized oscillations in intracellular Ca2+ concentration. These spontaneous Ca2+ waves usually started in the posterior cortex and propagated slowly (2.1 mm per second) toward its anterior end. Ca2+ waves were associated with field-potential changes and required activation of AMPA and NMDA receptors. Although GABAA receptors were not involved in wave initiation, the developmental transition of GABAergic transmission from depolarizing to hyperpolarizing (around postnatal day 7) stopped the oscillatory activity. Thus we identified a type of large-scale Ca2+ wave that may regulate long-distance wiring in the immature cortex.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Two-photon Ca2+ imaging in large neuronal assemblies.
Figure 2: Spontaneous oscillatory Ca2+ waves in the immature cortex.
Figure 3: Cortical early network oscillations involve the majority of cortical neurons.
Figure 4: Transcortical propagation of cENO-associated Ca2+ waves.
Figure 5: The cENOs are preserved at room temperature and blocked by tetrodotoxin.
Figure 6: Striking differences between cortical and hippocampal early network oscillations.
Figure 7: Developmental confinement of early network oscillations to the first few days after birth.
Figure 8: GABA-activated Ca2+ transients in the immature cortex.

References

  1. Spitzer, N. C. Spontaneous Ca2+ spikes and waves in embryonic neurons: signaling systems for differentiation. Trends Neurosci. 17, 115–118 (1994).

    Article  CAS  Google Scholar 

  2. Constantine-Paton, M. & Cline, H. T. LTP and activity-dependent synaptogenesis: the more alike they are, the more different they become. Curr. Opin. Neurobiol. 8, 139–148 (1998).

    Article  CAS  Google Scholar 

  3. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  4. Hanse, E., Durand, G. M., Garaschuk, O. & Konnerth, A. Activity-dependent wiring of the developing hippocampal neuronal circuit. Sem. Cell Dev. Biol. 8, 35–42 (1997).

    Article  CAS  Google Scholar 

  5. Yuste, R., Peinado, A. & Katz, L. C. Neuronal domains in developing neocortex. Science 257, 665–669 (1992).

    Article  CAS  Google Scholar 

  6. Kandler, K. & Katz, L. C. Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication. J. Neurosci. 18, 1419–1427 (1998).

    Article  CAS  Google Scholar 

  7. Feller, M. B., Wellis, D. P., Stellwagen, D., Werblin, F. S. & Shatz, C. J. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272, 1182–1187 (1996).

    Article  CAS  Google Scholar 

  8. Leinekugel, X., Medina, I., Khalilov, I., Ben-Ari, Y. & Khazipov, R. Ca2+ oscillations mediated by the synergistic excitatory action of GABAA and NMDA receptors in the neonatal hippocampus. Neuron 18, 243–255 (1997).

    Article  CAS  Google Scholar 

  9. Garaschuk, O., Hanse, E. & Konnerth, A. Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J. Physiol. (Lond.) 507, 219–236 (1998).

    Article  CAS  Google Scholar 

  10. Wong, R. O., Chernjavsky, A., Smith, S. J. & Shatz, C. J. Early functional neural networks in the developing retina. Nature 374, 716–718 (1995).

    Article  CAS  Google Scholar 

  11. Penn, A. A., Riquelme, P. A., Feller, M. B. & Shatz, C. J. Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 2108–2112 (1998).

    Article  CAS  Google Scholar 

  12. Owens, D. F., Boyce, L. H., Davis, M. B. & Kriegstein, A. R. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J. Neurosci. 16, 6414–6423 (1996).

    Article  CAS  Google Scholar 

  13. Flint, A. C., Dammerman, R. S. & Kriegstein, A. R. Endogenous activation of metabotropic glutamate receptors in neocortical development causes neuronal calcium oscillations. Proc. Natl. Acad. Sci. USA 96, 12144–12149 (1999).

    Article  CAS  Google Scholar 

  14. Schwartz, T. H. et al. Network of coactive neurons in developing layer 1. Neuron 20, 541–552 (1998).

    Article  CAS  Google Scholar 

  15. Blue, M. E. & Parnavelas, J. G. The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J. Neurocytol. 12, 697–712 (1983).

    Article  CAS  Google Scholar 

  16. Juraska, J. M. & Fifkova, E. An electron microscope study of the early postnatal development of the visual cortex of the hooded rat. J. Comp. Neurol. 183, 257–267 (1979).

    Article  CAS  Google Scholar 

  17. Dalva, M. B. & Katz, L. C. Rearrangements of synaptic connections in visual cortex revealed by laser photostimulation. Science 265, 255–258 (1994).

    Article  CAS  Google Scholar 

  18. Braitenberg, V. & Schüz, A. Anatomy of the Cortex 141–146 (Springer, New York, 1991).

    Google Scholar 

  19. Galuske, R. A. & Singer, W. The origin and topography of long-range intrinsic projections in cat visual cortex: a developmental study. Cereb. Cortex 6, 417–430 (1996).

    Article  CAS  Google Scholar 

  20. Weliky, M. & Katz, L. C. Functional mapping of horizontal connections in developing ferret visual cortex: experiments and modeling. J. Neurosci. 14, 7291–7305 (1994).

    Article  CAS  Google Scholar 

  21. Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

    Article  CAS  Google Scholar 

  22. Yuste, R. & Katz, L. C. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6, 333–344 (1991).

    Article  CAS  Google Scholar 

  23. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  24. Williams, R. M., Piston, D. W. & Webb, W. W. Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J. 8, 804–813 (1994).

    Article  CAS  Google Scholar 

  25. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).

    Article  CAS  Google Scholar 

  26. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    Article  CAS  Google Scholar 

  27. Blue, M. E. & Parnavelas, J. G. The formation and maturation of synapses in the visual cortex of the rat. I. Qualitative analysis. J. Neurocytol. 12, 599–616 (1983).

    Article  CAS  Google Scholar 

  28. Yuste, R., Nelson, D. A., Rubin, W. W. & Katz, L. C. Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron 14, 7–17 (1995).

    Article  CAS  Google Scholar 

  29. Kullmann, D. M., Erdemli, G. & Asztely, F. Long-term potentiation of AMPAR- and NMDAR-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron 17, 1–20 (1996).

    Article  Google Scholar 

  30. Flint, A. C., Liu, X. & Kriegstein, A. R. Nonsynaptic glycine receptor activation during early neocortical development. Neuron 20, 43–53 (1998).

    Article  CAS  Google Scholar 

  31. Ben-Ari, Y., Cherubini, E., Corradetti, R. & Gaiarsa, J. L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. (Lond.) 416, 303–325 (1989).

    Article  CAS  Google Scholar 

  32. Blake, J. F., Yates, R. G., Brown, M. W. & Collingridge, G. L. 6-Cyano-7-nitroquinoxaline-2,3-dione as an excitatory amino acid antagonist in area CA1 of rat hippocampus. Br. J. Pharmacol. 97, 71–76 (1989).

    Article  CAS  Google Scholar 

  33. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996).

    Article  CAS  Google Scholar 

  34. Isaac, J. T. R., Crair, M. C., Nicoll, R. A. & Malenka, R. C. Silent synapses during development of thalamocortical inputs. Neuron 18, 269–280 (1997).

    Article  CAS  Google Scholar 

  35. Feller, M. B., Butts, D. A., Aaron, H. L., Rokhsar, D. S. & Shatz, C. J. Dynamic processes shape spatiotemporal properties of retinal waves. Neuron 19, 293–306 (1997).

    Article  CAS  Google Scholar 

  36. Leinekugel, X., Khalilov, I., Ben-Ari, Y. & Khazipov, R. Giant depolarizing potentials: the septal pole of the hippocampus paces the activity of the developing intact septohippocampal complex in vitro. J. Neurosci. 18, 6349–6357 (1998).

    Article  CAS  Google Scholar 

  37. Konnerth, A., Heinemann, U. & Yaari, Y. Slow transmission of neural activity in hippocampal area CA1 in absence of active chemical synapses. Nature 307, 69–71 (1984).

    Article  CAS  Google Scholar 

  38. LoTurco, J. J., Owens, D. F., Heath, M. J. S., Davis, M. B. E. & Kriegstein, A. R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298 (1995).

    Article  CAS  Google Scholar 

  39. Ghosh, A. & Greenberg, M. E. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247 (1995).

    Article  CAS  Google Scholar 

  40. Gu, X. & Spitzer, N. C. Breaking the code: regulation of neuronal differentiation by spontaneous calcium transients. Dev. Neurosci. 19, 33–41 (1997).

    Article  CAS  Google Scholar 

  41. Komuro, H. & Rakic, P. Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17, 275–285 (1996).

    Article  CAS  Google Scholar 

  42. Kater, S. B., Mattson, M. P., Cohan, C. & Connor, J. Calcium regulation of the neuronal growth cone. Trends Neurosci. 11, 315–321 (1988).

    Article  CAS  Google Scholar 

  43. Kirsch, J. & Betz, H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392, 717–720 (1998).

    Article  CAS  Google Scholar 

  44. Gomez, T. M. & Spitzer, N. C. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397, 350–355 (1999).

    Article  CAS  Google Scholar 

  45. Edwards, F., Konnerth, A., Sakmann, B. & Takahashi, T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Arch. 414, 600–612 (1989).

    Article  CAS  Google Scholar 

  46. Konnerth, A. Patch-clamping in slices of mammalian CNS. Trends Neurosci. 13, 321–323 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Brown for advice and help in developing the two-photon imaging set-up and E. Hanse and M. Noll-Hussong for participating in the preliminary experiments. We also thank A. Selyanko for comments on the manuscript and R. Trautmann, H. Krempel, E. Eilers and D. Hof for technical assistance. The work was supported by the HFSP and the Deutsche Forschungsgemeinschaft (SFB 391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Konnerth.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garaschuk, O., Linn, J., Eilers, J. et al. Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci 3, 452–459 (2000). https://doi.org/10.1038/74823

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing