A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase β

Article metrics


Voltage-gated sodium channels in brain neurons were found to associate with receptor protein tyrosine phosphatase β (RPTPβ) and its catalytically inactive, secreted isoform phosphacan, and this interaction was regulated during development. Both the extracellular domain and the intracellular catalytic domain of RPTPβ interacted with sodium channels. Sodium channels were tyrosine phosphorylated and were modulated by the associated catalytic domains of RPTPβ. Dephosphorylation slowed sodium channel inactivation, positively shifted its voltage dependence, and increased whole-cell sodium current. Our results define a sodium channel signaling complex containing RPTPβ, which acts to regulate sodium channel modulation by tyrosine phosphorylation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Co-immunoprecipitation of RPTPβ with sodium channels in P1 and P16 rat brain membrane lysates.
Figure 2: Interaction of sodium channels with the extracellular carbonic anhydrase domain of RPTPβ.
Figure 3: Co-immunoprecipitation of transfected sodium channel subunits with an endogenously expressed RPTPβ isoform in tsA-201 cells.
Figure 4: Interaction of β1/β2 chimeras with RPTPβ in tsA-201 cells.
Figure 5: Sodium channel α subunits are tyrosine phosphorylated, and sodium channel α and β1 subunits co-immunoprecipitate with wild-type and mutant RPTPβ cytoplasmic domain proteins.
Figure 6: Sodium channel α subunits are modulated after associating with RPTPβ phosphatase domains.
Figure 7: Effects of sodium pervanadate on PTPwt-cotransfected cells.


  1. 1

    Catterall, W. A. Cellular and molecular biology of voltage-gated sodium channels. Physiol. Rev. 72, S15–S48 (1992).

  2. 2

    Isom, L. L., Catterall, W. A. Na+ channel subunits and Ig domains. Nature 383, 307 –308 (1996).

  3. 3

    Isom, L. L. et al. Structure and function of the β2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM-motif. Cell 83, 433–442 (1995).

  4. 4

    Cantrell, A. R., Ma, J. Y., Scheuer, T., Catterall, W. A. Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons. Neuron 16, 1019–1025 ( 1996).

  5. 5

    Cantrell, A. R., Scheuer, T., Catterall, W. A. Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel α subunit. J. Neurosci. 17, 7330–7338 (1997).

  6. 6

    Hilborn, M. D., Vaillancourt, R. R., Rane, S. G. Growth factor receptor tyrosine kinases acutely regulate neuronal sodium channels through the src signaling pathway. J. Neurosci. 18, 590–600 ( 1998).

  7. 7

    Fischer, E. H., Charbonneau, H., Tonks, N. K. Protein tyrosine phosphatases: A diverse family of intracellular and transmembrane enzymes. Science 253, 401–406 (1991).

  8. 8

    Barnes, G. et al. Receptor tyrosine phosphatase beta is expressed in the form of proteoglycan and binds to the extracellular matrix protein tenascin. J. Biol. Chem. 269, 14349–14352 (1994).

  9. 9

    Levy, J. B. et al. The cloning of a receptor-type protein tyrosine phosphatase expressed in the central nervous system. J. Biol. Chem. 268, 10573–10581 (1993).

  10. 10

    Maurel, P, Rauch, U., Flad, M., Margolis, R. K., Margolis, R. U. Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of receptor-type protein tyrosine phosphatase. Proc. Natl. Acad. Sci. USA 91, 2512– 2516 (1994).

  11. 11

    Peles, E. et al. The carbonic anhydrase domain of receptor tyrosine phosphatase beta is a functional ligand for the axonal cell recognition molecule contactin . Cell 82, 251–260 (1995).

  12. 12

    Sakurai, T. et al. Induction of neurite outgrowth through contactin and Nr-CAM by extracellular regions of glial receptor tyrosine phosphatase beta. J. Cell Biol. 136, 907–918 (1997).

  13. 13

    den Hertog, J. et al. Receptor protein tyrosine phosphatase alpha activates pp60c-src and is involved in neuronal differentiation. EMBO J. 12, 3789–3798 (1993).

  14. 14

    Kokel, M., Borland, C. Z., DeLong, L., Horvitz, H. R., Stern, M. J. clr-1 encodes a receptor tyrosine phosphatase that negatively regulates an FGF receptor signaling pathway in Caenorhabditis elegans. Genes Dev. 12, 1425–1437 (1998).

  15. 15

    Meyer-Puttlitz, B. et al. Chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of nervous tissue: developmental changes of neurocan and phosphacan. J. Neurochem. 65, 2327–2337 (1995).

  16. 16

    Canoll, P. D., Petanceska, S., Schlessinger, J., Musacchio, J. M. Three forms of RPTP-β are differentially expressed during gliogenesis in the developing rat brain and during glial cell differentiation in culture . J. Neurosci. Res. 44, 199– 215 (1996).

  17. 17

    Nishiwaki, T., Maeda, N. & Noda, M. Characterization and developmental regulation of proteoglycan-type protein tyrosine phosphatase Z/RPTPβ isoforms. J. Biochem. 123, 458–467 (1998).

  18. 18

    Kim, J. S., Raines, R. T. Ribonuclease S-peptide as a carrier in fusion proteins. Protein Sci. 2, 348– 356 (1993).

  19. 19

    Srinivasan, J., Schachner, M., Catterall, W. A. Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc. Natl. Acad. Sci. USA 95, 15753– 15757 (1998).

  20. 20

    Tsai, W., Morielli, A. D., Cachero, T. G., Peralta, E. G. Receptor protein tyrosine phosphatase alpha participates in the m1 muscarinic acetylcholine receptor-dependent regulation of Kv1. 2 channel activity. EMBO J. 18, 109–118 ( 1999).

  21. 21

    Bliska, J. B., Clemens, J. C., Dixon, J. E., Falkow, S. The Yersinia tyrosine phosphatase: specificity of a bacterial virulence determinant for phosphoproteins in the J774A. 1 macrophage. J. Exp. Med. 176, 1625–1630 (1992).

  22. 22

    Sobko, A., Peretz, A. & Attali, B. Constitutive activation of delayed-rectifier potassium channels by a src family tyrosine kinase in Schwann cells. EMBO J. 17, 4723–4734 ( 1998).

  23. 23

    Holmes, T. C., Fadool, D. A., Ren, R., Levitan, I. B. Association of Src tyrosine kinase with a human potassium channel mediated by SH3 domain. Science 274, 2089–2091 ( 1996).

  24. 24

    Wischmeyer, E., Döring, F., Karschin, A. Acute suppression of inwardly rectifying Kir2. 1 channels by direct tyrosine kinase phosphorylation. J. Biol. Chem. 273, 34063–34068 (1998).

  25. 25

    Yu, X.-M., Askalan, R., Keil, I. G. J., Salter, M. W. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275, 674–678 ( 1997).

  26. 26

    Hu, X.-Q., Singh, N., Mukhopadhyay, D., Akbarali, H. I. Modulation of voltage-dependent Ca2+ channels in rabbit colonic smooth muscle cells by c-Src and focal adhesion kinase. J. Biol. Chem. 273, 5337–5342 ( 1998).

  27. 27

    Snyder, S. E., Li, J., Schauwecker, P. E., McNeill, T. H., Salton, S. R. Comparison of RPTP zeta/beta, phosphacan, and trkB mRNA expression in the developing and adult rat nervous system and induction of RPTP zeta/beta and phosphacan mRNA following brain injury. Mol. Brain Res. 40, 79– 96 (1996).

  28. 28

    Weber, P. et al. Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. J. Neurosci. 19, 4245–4262 (1999).

  29. 29

    Xiao, Z. -C. et al. Tenascin-R is a functional modulator of sodium channel β subunits. J. Biol. Chem. 274, 26511– 26517 (1999).

  30. 30

    Cantrell, A. R., Tibbs, V. C., Westenbroek, R. E., Scheuer, T. & Catterall, W. A. Dopaminergic modulation of voltage-gated Na+ current in rat hippocampal neurons requires anchoring of cAMP-dependent protein kinase. J. Neurosci. 19, RC21 (1999).

  31. 31

    Westenbroek, R. E., Merrick, D. K. & Catterall, W. A. Differential subcellular localization of the R I and RII Na+ channel subtypes in central neurons. Neuron 3, 695– 704 (1989).

  32. 32

    Gordon, D., Merrick, D., Wollner, D. A. & Catterall, W. A. Biochemical properties of sodium channels in a wide range of excitable tissues studied with site-directed antibodies. Biochemistry 27, 7032–7038 (1988).

  33. 33

    Maurel, P., Meyer-Pullitz, B., Glad, M., Margolis, R. U. & Margolis, R. K. Nucleotide sequence and molecular variants of rat receptor-type protein tyrosine phosphatase zeta/beta. DNA Seq. 5, 323–328 ( 1995).

  34. 34

    Auld, V. J. et al. A neutral amino acid change in segment IIS4 dramatically alters the gating properties of the voltage-dependent sodium channel. Proc. Natl. Acad. Sci. USA 87, 323– 327 (1990).

  35. 35

    McCormick, K. A., Srinivasan, J., White, K., Scheuer, T. & Catterall, W. A. The extracellular domain of the β1 subunit is both necessary and sufficient for β1-like modulation of sodium channel gating. J. Biol. Chem. 274, 32638–32646 (1999).

  36. 36

    Evans, G. A., Garcia, G. G., Erwin, R., Howard, O. M. & Farrar, W. L. Pervanadate simulates the effects of interleukin-2 (IL-2) in human T cells and provides evidence for the activation of two distinct tyrosine kinase pathways by IL-2. J. Biol. Chem. 269 , 23407–23412 (1994).

  37. 37

    Hartshorne, R. P. & Catterall, W. A. The sodium channel from rat brain. Purification and subunit composition. J. Biol. Chem. 259, 1667–1675 (1984).

  38. 38

    Qu, Y., Rogers, J., Tanada, T., Scheuer, T. & Catterall, W. A. Modulation of cardiac Na+ channels expressed in a mammalian cell line and in ventricular myocytes by protein kinase C. Proc. Natl. Acad. Sci. USA 91, 3289–3293 (1994).

  39. 39

    Jurman, M. E., Boland, L. M., Liu, Y. & Yellen, G. Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques 17, 876– 881 (1994).

Download references


We thank Carl Baker for technical assistance. CFR was supported by a fellowship from the Wellcome Trust. This research was supported by NIH Research Grants NS25704 (W.A.C.) and GM18848 (J.E.D.).

Author information

Correspondence to William A. Catterall.

Rights and permissions

Reprints and Permissions

About this article

Further reading