Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions


Neural correlates of the often-powerful emotional responses to music are poorly understood. Here we used positron emission tomography to examine cerebral blood flow (CBF) changes related to affective responses to music. Ten volunteers were scanned while listening to six versions of a novel musical passage varying systematically in degree of dissonance. Reciprocal CBF covariations were observed in several distinct paralimbic and neocortical regions as a function of dissonance and of perceived pleasantness/unpleasantness. The findings suggest that music may recruit neural mechanisms similar to those previously associated with pleasant/unpleasant emotional states, but different from those underlying other components of music perception, and other emotions such as fear.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Examples of music stimuli and average subject ratings of unpleasant versus pleasant and happy versus sad for each version.
Figure 2: Cortical regions demonstrating significant rCBF correlations with dissonance level.
Figure 3: Cortical regions demonstrating significant rCBF correlations with ratings of increasing unpleasantness and increasing pleasantness.


  1. 1

    Davis, W. B. & Thaut, M. H. The influence of preferred relaxing music on measures of state anxiety, relaxation, and physiological responses. J. Music Ther. 26, 168– 187 (1989).

    Article  Google Scholar 

  2. 2

    Krumhansl, C. L. An exploratory study of musical emotions and psychophysiology. Can. J. Exp. Psychol. 51, 336–352 (1997).

    CAS  Article  Google Scholar 

  3. 3

    Krumhansl, C. L. Cognitive Foundations of Musical Pitch; Oxford Psychology Series No. 17 (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  4. 4

    Milner, B. A. in Interhemispheric Relations and Cerebral Dominance (ed. V. Mountcastle) 177–195 (Johns Hopkins Univ. Press, Baltimore, Maryland, 1962).

    Google Scholar 

  5. 5

    Zatorre, R. J. Pitch perception of complex tones and human temporal-lobe function. J. Acoust. Soc. Am. 84, 566–572 (1988).

    CAS  Article  Google Scholar 

  6. 6

    Zatorre, R. J. & Samson, S. Role of the right temporal neocortex in retention of pitch in auditory short-term memory. Brain 114, 2403–2417 (1991).

    Article  Google Scholar 

  7. 7

    Zatorre, R. J., Evans, A. C., Meyer, E. & Gjedde, A. Lateralization of phonetic and pitch processing in speech perception. Science 256, 846–849 (1992).

    CAS  Article  Google Scholar 

  8. 8

    Binder, J. R. et al. Human brain language areas identified by functional MRI. J. Neurosci. 17, 353–362 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Zatorre, R. J., Evans, A. C. & Meyer, E. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 14, 1908– 1919 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Peretz, I., Gagnon, L. & Bouchard, B. Music and emotion: perceptual determinants, immediacy and isolation after brain damage. Cognition 68, 111–141 (1998).

    CAS  Article  Google Scholar 

  11. 11

    Goldstein, A. Thrills in response to music and other stimuli. Physiol. Psychol. 8, 126–129 (1980).

    Article  Google Scholar 

  12. 12

    Dowling, W. J. & Harwood, D. L. Music Cognition 62–89; 202–224 (Academic, Orlando, Florida, 1986).

    Google Scholar 

  13. 13

    Sloboda, J. A. Music structure and emotional response: some empirical findings. Psychol. Music 19, 110–120 (1991).

    Article  Google Scholar 

  14. 14

    Robazza, C., Macaluso, C. & D'Urso, V. Emotional reactions to music by gender, age, and expertise. Percept. Mot. Skills 79, 939– 944 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

  16. 16

    Petrides, M. & Pandya, D. N. Comparative architectonic analysis of the human and the macaque frontal cortex. Handbook Neuropsychol. 9, 17–58 (1994).

    Google Scholar 

  17. 17

    Zola-Morgan, S., Squire, L. R., Amaral, D. G. & Suzuki, W. A. Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J. Neurosci. 9, 4355–4370 (1989).

    CAS  Article  Google Scholar 

  18. 18

    Bunsey, M. & Eichenbaum, H. Critical role of the parahippocampal region for paired-associate learning in rats. Behav. Neurosci. 107, 740–747 (1993).

    CAS  Article  Google Scholar 

  19. 19

    Aguirre, G. K., Detre, J. A., Alsop, D. C. & D'Esposito, M. The parahippocampus subserves topographical learning in man. Cereb. Cortex 6, 823–829 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Stefanacci, L., Suzuki, W. A. & Amaral, D. G. Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. J. Comp. Neurol. 375, 552– 582 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Lane, R. D. et al. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 35, 1437– 1444 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Berthoz, A., Parietal and hippocampal contribution to topokinetic and topographic memory. Phil. Trans. R. Soc. Lond. B 352, 1437– 1448 (1997).

    CAS  Article  Google Scholar 

  23. 23

    Le, T. H., Pardo, J. V. & Hu, X. 4T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. J. Neurophysiol. 79, 1535–1548 (1998).

    CAS  Article  Google Scholar 

  24. 24

    LeDoux, J. E. Emotional memory systems in the brain. Behav. Brain Res. 58, 69–79 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Wheeler, R. E., Davidson, R. J. & Tomarken, A. J. Frontal brain asymmetry and emotional reactivity: a biological substrate of affective style. Psychophysiology 30, 82–89 (1993).

    CAS  Article  Google Scholar 

  26. 26

    Rolls, E. T., Hornak, J., Wade, D. & McGrath, J. Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J. Neurol. Neurosurg. Psychiatry 57, 1518–1524 (1994).

    CAS  Article  Google Scholar 

  27. 27

    George, M. S. et al. Brain activity during transient sadness and happiness in healthy women. Am. J. Psychiatry 152, 341–351 (1995).

    CAS  Article  Google Scholar 

  28. 28

    Bechara, A., Tranel, D., Damasio, H. & Damasio, A. R. Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb. Cortex 6, 215– 25 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Damasio, A. R., The somatic marker hypothesis and the possible functions of the prefrontal cortex. Phil. Trans. R. Soc. Lond. B 351, 1413–1420 (1996).

    CAS  Article  Google Scholar 

  30. 30

    Dias, R., Robbins, T. W. & Roberts A. C. Dissociation in prefrontal cortex of affective and attentional shifts Nature 380, 69– 72 (1996).

    CAS  Article  Google Scholar 

  31. 31

    Hornak, J., Rolls, E. T. & Wade, D. Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia 34, 247– 261 (1996).

    CAS  Article  Google Scholar 

  32. 32

    Drevets, W. C. et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386, 824–827 (1997).

    CAS  Article  Google Scholar 

  33. 33

    Lane, R. D., Reiman, E. M., Ahern, G. L., Schwartz, G. E. & Davidson, R. J. Neuroanatomical correlates of happiness, sadness, and disgust. Am. J. Psychiatry 154, 926–933 (1997).

    CAS  Article  Google Scholar 

  34. 34

    Paradiso, S. et al. Emotional activation of limbic circuitry in elderly normal subjects in a PET study. Am. J. Psychiatry 154, 384–389 (1997).

    CAS  Article  Google Scholar 

  35. 35

    Zald, D. H. & Pardo, J. V. Emotion, olfaction, and the human amygdala: amygdala activation during aversive olfactory stimulation. Proc. Natl. Acad. Sci. USA 94, 4119– 4124 (1997).

    CAS  Article  Google Scholar 

  36. 36

    Lane, R. D., Kivley, L. S., Du Bois, M. A., Shamasundara, P. & Schwartz, G. E. Levels of emotional awareness and the degree of right hemispheric dominance in the perception of facial emotion. Neuropsychologia 33, 25– 38 (1995).

    Article  Google Scholar 

  37. 37

    Erhan, H., Borod, J. C., Tenke, C. E. & Bruder, G. E. Identification of emotion in a dichotic listening task: event-related brain potential and behavioral findings. Brain Cogn. 37, 286–307 (1998).

    CAS  Article  Google Scholar 

  38. 38

    Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. R. Fear and the human amygdala. J. Neurosci. 15, 5879– 5891 (1995).

    CAS  Article  Google Scholar 

  39. 39

    Hugdahl, K. et al. Brain mechanisms in human classical conditioning: a PET blood flow study. Neuroreport 6, 1723– 1728 (1995).

    CAS  Article  Google Scholar 

  40. 40

    Morris, J. S. et al. A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383, 812–815 (1996).

    CAS  Article  Google Scholar 

  41. 41

    Rogan, M. T. & LeDoux, J. E. Emotion: systems, cells, synaptic plasticity. Cell 85, 469– 475 (1996).

    CAS  Article  Google Scholar 

  42. 42

    Raichle, M. E., Martin, W. R. W., Herscovitch, P., Mintun, M. A. & Markham, J. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J. Nucl. Med. 24, 790–798 (1983).

    CAS  PubMed  Google Scholar 

  43. 43

    Fox, P. T. & Raichle, M. E. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J. Neurophysiol. 51, 1109– 1120 (1984).

    CAS  Article  Google Scholar 

  44. 44

    Collins, D. L., Neelin, P., Peters, T. M. & Evans, A. C. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr. 18, 192–205 (1994).

    CAS  Article  Google Scholar 

  45. 45

    Paus, T., Perry, D. W., Zatorre, R. J., Worsley, K. J. & Evans, A. C. Modulation of cerebral blood flow in the human auditory cortex during speech: role of motor-to-sensory discharges. Eur. J. Neurosci. 8, 2236– 2246 (1996).

    CAS  Article  Google Scholar 

  46. 46

    Sokal, R. R. & Rohlf, F. J. Biometry 2nd edn (Freeman, San Francisco, California, 1981).

    Google Scholar 

  47. 47

    Worsley, K. J., Evans, A. C., Marrett, S. & Neelin, P. A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12, 900–918 (1992).

    CAS  Article  Google Scholar 

Download references


We thank Christine Beckett for assistance in composing the music stimuli used in this experiment, and Pierre Ahad for his expertise in sound technology and computer programming. We also thank the technical staff of the McConnell Brain Imaging Unit and of the Medical Cyclotron Unit for their assistance, and Sylvain Milot for his technical expertise. This work was supported by Grants MT11541 and GR13972 from the Medical Research Council of Canada, by the Jeanne Timmins Costello Fellowship in Neuroscience awarded to A.J.B. by the Montreal Neurological Institute, and by the McDonnell-Pew Cognitive Neuroscience Program.

Author information



Corresponding author

Correspondence to Anne J. Blood.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blood, A., Zatorre, R., Bermudez, P. et al. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 2, 382–387 (1999). https://doi.org/10.1038/7299

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing