Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Attention activates winner-take-all competition among visual filters

Abstract

Shifting attention away from a visual stimulus reduces, but does not abolish, visual discrimination performance. This residual vision with 'poor' attention can be compared to normal vision with 'full' attention to reveal how attention alters visual perception. We report large differences between residual and normal visual thresholds for discriminating the orientation or spatial frequency of simple patterns, and smaller differences for discriminating contrast. A computational model, in which attention activates a winner-take-all competition among overlapping visual filters, quantitatively accounts for all observations. Our model predicts that the effects of attention on visual cortical neurons include increased contrast gain as well as sharper tuning to orientation and spatial frequency.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Measurement of visual thresholds with either full or poor attention.
Figure 2: Single- and double-task thresholds compared.
Figure 3: Three-stage model of visual filters and their interactions (schematic).
Figure 4: Predicted thresholds when attention changes some model parameters but not others.
Figure 5: Effect of attention on early visual processing.
Figure 6: Attentional change in the response distribution.

References

  1. Pashler, H. The Psychology of Attention (MIT Press, Cambridge, Massachusetts, 1997).

    Book  Google Scholar 

  2. Mueller, H. J. & Findlay, J. M. Sensitivity and criterion effects in the spatial cueing of visual attention. Percept. Psychophys. 42, 383–399 (1987).

    Article  Google Scholar 

  3. Treisman, A. & Gormican, S. Feature analysis in early vision: evidence from search asymmetries. Psychol. Rev. 12, 97–136 (1988).

    Google Scholar 

  4. Braun, J. & Julesz, B. Withdrawing attention at little or no cost: Detection and discrimination tasks. Percept. Psychophys. 60, 1–23 (1998).

    CAS  Article  Google Scholar 

  5. Lee, D. K., Koch, C. & Braun, J. Spatial vision thresholds in the near absence of attention. Vision Res. 37, 2409–2418 (1997).

    CAS  Article  Google Scholar 

  6. Nachmias, J. & Sansbury, R. V. Letter: Grating contrast: discrimination may be better than detection. Vision Res. 14, 1039–1042 (1974).

    CAS  Article  Google Scholar 

  7. Wilson, H. R. A transducer function for threshold and suprathreshold human vision. Biol. Cybern. 38, 171–178 (1980).

    CAS  Article  Google Scholar 

  8. Legge, G. E. & Foley, J. M. Contrast masking in human vision. J. Opt. Soc. Am. 70, 1458– 1471 (1980).

    CAS  Article  Google Scholar 

  9. Bowne, S. F. Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination. Vision Res. 30, 449–461 (1990).

    CAS  Article  Google Scholar 

  10. Wilson, H. R. & Wilkinson, F. Evolving concepts of spatial channels in vision: from independence to nonlinear interactions. Perception 26, 939–960 (1997).

    CAS  Article  Google Scholar 

  11. Wilson, H. R. & Humanski, R. Spatial frequency adaptation and contrast gain control. Vision Res. 33, 1133–1149 (1993).

    CAS  Article  Google Scholar 

  12. Foley, J. M. Human luminance pattern-vision mechanisms: masking experiments require a new model. J. Opt. Soc. Am. 11, 1710– 1719 (1994).

    CAS  Article  Google Scholar 

  13. Zenger, B. & Sagi, D. Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection. Vision Res. 36, 2497–2513 (1996).

    CAS  Article  Google Scholar 

  14. Carandini, M. & Heeger, D. J. Summation and division by neurons in primate visual cortex. Science 264, 1333–1336 (1994).

    CAS  Article  Google Scholar 

  15. Itti, L., Braun, J., Lee, D. K. & Koch, C. in Advances in Neural Information Processing Systems, Vol. 9 (eds. Mozer, M. C., Jordan, M. I. & Petsche, T.) 173–179 (MIT Press, Cambridge, Massachusetts, 1997).

    Google Scholar 

  16. Somers, D. C., Nelson, S. B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    CAS  Article  Google Scholar 

  17. Carandini, M., Heeger, D. J. & Movshon, J. A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

    CAS  Article  Google Scholar 

  18. Braun, J. & Sagi, D. Vision outside the focus of attention. Percept. Psychophys. 48, 45– 58 (1990).

    CAS  Article  Google Scholar 

  19. Braun, J. Visual search among items of different salience: removal of visual attention mimics a lesion in extrastriate area V4. J. Neurosci. 14, 554–567 (1994).

    CAS  Article  Google Scholar 

  20. Palmer, J. Attention in visual search: distinguishing four causes of set-size effects. Curr. Dir. Psychol. Sci. 4, 118– 123 (1995).

    Article  Google Scholar 

  21. Solomon, J. A., Lavie, N. & Morgan, M. J. Contrast discrimination function: spatial cuing effects. J. Opt. Soc. Am. 14, 2443– 2448 (1997).

    CAS  Article  Google Scholar 

  22. Foley, J. M. & Schwarz, W. Spatial attention: effect of position uncertainty and number of distractor patterns on the threshold-versus-contrast function for contrast discrimination. J. Opt. Soc. Am. 15, 1036–1046 (1998).

    Article  Google Scholar 

  23. DeValois, R. L. & DeValois, K. K. Spatial Vision (Oxford Univ. Press, New York, 1988).

    Google Scholar 

  24. Wilson, H. R., Levi, D., Maffei, L., Rovamo, J. & DeValois, R. in Visual Perception: The Neurophysiological Foundations (eds. Spillmann, L. & Werner, J. S.) 231– 272 (Academic, San Diego, California, 1990).

    Book  Google Scholar 

  25. Geisler, W. S. & Albrecht, D. G. Visual cortex neurons in monkeys and cats: detection, discrimination, and identification. Vis. Neurosci. 14, 897– 919 (1997).

    CAS  Article  Google Scholar 

  26. Bonnel, A.-M. & Miller, J. Attentional effects on concurrent psychophysical discriminations: investigations of a sample size model. Percept. Psychophys. 55, 162–179 (1994).

    CAS  Article  Google Scholar 

  27. Lu, Z. L. & Dosher, B. A. External noise distinguishes attention mechanisms. Vision Res. 38, 1183– 1198 (1998).

    CAS  Article  Google Scholar 

  28. Morgan, M. J., Ward, R. M. & Castet, E. Visual search for a tilted target: tests of spatial uncertainty models. Q. J. Exp. Psychol. 51, 347–370 (1998).

    CAS  Article  Google Scholar 

  29. Yeshurun, Y. & Carrasco, M. Spatial attention improves performance in spatial resolution task. Vision Res. 39, 293–305 (1999).

    CAS  Article  Google Scholar 

  30. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    CAS  Article  Google Scholar 

  31. Motter, B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993).

    CAS  Article  Google Scholar 

  32. Treue, S. & Maunsell, J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    CAS  Article  Google Scholar 

  33. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    CAS  Article  Google Scholar 

  34. Roelfsema, P. R., Lamme, V. A. & Spekreijse, H. Object-based attention in the primary visual cortex of the macaque monkey. Nature 395, 376– 381 (1998).

    CAS  Article  Google Scholar 

  35. Brefczynski, J. A. & DeYoe, E. A. A physiological correlate of the 'spotlight' of visual attention. Nat. Neurosci. 2, 370–374 (1999).

    CAS  Article  Google Scholar 

  36. Niebur, E. & Koch, C. A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons. J. Comput. Neurosci. 1, 141– 158 (1994).

    CAS  Article  Google Scholar 

  37. Tsotsos, J. K. et al. Modeling visual attention via selective tuning. Artif. Intell. 78, 507–547 (1995).

    Article  Google Scholar 

  38. Desimone, R. Visual attention mediated by biased competition in extrastriate visual cortex. Phil. Trans. R. Soc. Lond. B 353, 1245– 1255 (1998).

    CAS  Article  Google Scholar 

  39. McAdams, C. J. & Maunsell, J. H. R. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431– 441 (1999).

    CAS  Article  Google Scholar 

  40. Spitzer, H., Desimone, R. & Moran, J. Increased attention enhances both behavioral and neuronal performance. Science 240, 338– 340 (1988).

    CAS  Article  Google Scholar 

  41. Tyler, C. W. Colour bit-stealing to enhance the luminance resolution of digital displays on a single pixel basis. Spatial Vis. 10, 369–377 (1997).

    CAS  Article  Google Scholar 

  42. Duncan, J. Selective attention and the organization of visual information. J. Exp. Psychol Gen. 113, 501–517 (1984).

    CAS  Article  Google Scholar 

  43. Pashler, H. Dual-task interference in simple tasks - Data and theory. Psychology B 116, 220–244 (1994).

    CAS  Article  Google Scholar 

  44. Dosher, B. A. & Sperling, G. in Handbook of Perception and Cognition, Perception and Cognition at Century's End: History, Philosophy, Theory (ed. Hochberg, J.) 201–254 (Academic, New York, 1998).

    Google Scholar 

  45. Duncan, J., Ward, R. & Shapiro, K. Direct measurement of attentional dwell time in human vision. Nature 369, 313– 315 (1994).

    CAS  Article  Google Scholar 

  46. Braun, J. Vision and attention: the role of training. Nature 393, 424–425 (1998).

    CAS  Article  Google Scholar 

  47. Lee, D. K., Koch, C. & Braun, J. Visual attention is undifferentiated: concurrent discrimination of form, color, and motion. Percept. Psychophys. 61 (in press).

  48. Seung, H. S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749–10753 (1993).

    CAS  Article  Google Scholar 

  49. Pouget, A., Zhang, K., Deneve, S. & Latham, P. E. Statistically efficient estimation using population coding. Neural Comput. 10, 373–401 (1998).

    CAS  Article  Google Scholar 

  50. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in C, 2nd ed. (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

Download references

Acknowledgements

Supported by NSF, NIMH, ONR and the NSF-ERC at Caltech. We thank T. Albright and T. Sejnowski for access to facilities and J. Gallant, A. Manwani, S. Shimojo, K. Watanabe and B. Zenger for comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Braun.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, D., Itti, L., Koch, C. et al. Attention activates winner-take-all competition among visual filters . Nat Neurosci 2, 375–381 (1999). https://doi.org/10.1038/7286

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7286

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing