Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The quest for action potentials in C. elegans neurons hits a plateau

The small size and high resistance of C. elegans neurons makes them sensitive to the random opening of single ion channels, probably rendering codes that are based on classical, all-or-none action potentials unworkable. The recent discovery in C. elegans of a special class of regenerative events known as plateau potentials introduces the possibility of digital neural codes. Such codes would solve the problem of representing information in nervous systems in which action potentials are unreliable.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic representations of regenerative events.

References

  1. 1

    White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    CAS  Article  Google Scholar 

  2. 2

    Goodman, M.B., Hall, D.H., Avery, L. & Lockery, S.R. Neuron 20, 763–772 (1998).

    CAS  Article  Google Scholar 

  3. 3

    Brockie, P.J., Mellem, J.E., Hills, T., Madsen, D.M. & Maricq, A.V. Neuron 31, 617–630 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Christensen, M. et al. Neuron 33, 503–514 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Nickell, W.T., Pun, R.Y., Bargmann, C.I. & Kleene, S.J. J. Membr. Biol. 189, 55–66 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Mellem, J.E., Brockie, P.J., Madsen, D.M. & Maricq, A.V. Nat. Neurosci. 11, 865–867 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Marder, E. Curr. Biol. 1, 326–327 (1991).

    CAS  Article  Google Scholar 

  8. 8

    Russell, D.F. & Hartline, D.K. J. Neurophysiol. 48, 914–937 (1982).

    CAS  Article  Google Scholar 

  9. 9

    Davis, R.E. & Stretton, A.O.W. J. Neurosci. 9, 415–425 (1989).

    CAS  Article  Google Scholar 

  10. 10

    Angstadt, J.D. & Stretton, A.O.W. J. Comp. Physiol. [A] 166, 165–177 (1989).

    CAS  Article  Google Scholar 

  11. 11

    Angstadt, J.D., Donmoyer, J.E. & Stretton, A.O. J. Comp. Neurol. 284, 374–388 (1989).

    CAS  Article  Google Scholar 

  12. 12

    Holden-Dye, L. & Walker, R.J. Parasitology 108, 81–87 (1994).

    Article  Google Scholar 

  13. 13

    Davis, R.E. & Stretton, A.O.W. J. Comp. Physiol. [A] 171, 17–28 (1992).

    CAS  Article  Google Scholar 

  14. 14

    Lee, C.R. & Tepper, J.M. J. Neurosci. 27, 6531–6541 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Lo, F.S., Ziburkus, J. & Guido, W. J. Neurophysiol. 87, 1175–1185 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Otsuka, T., Abe, T., Tsukagawa, T. & Song, W.J. J. Neurophysiol. 92, 255–264 (2004).

    Article  Google Scholar 

  17. 17

    Simon, M., Perrier, J.F. & Hounsgaard, J. Eur. J. Neurosci. 18, 258–266 (2003).

    Article  Google Scholar 

  18. 18

    Amat, C., Lapied, B., French, A.S. & Hue, B. J. Neurophysiol. 80, 2718–2726 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Zhang, B. & Harris-Warrick, R.M. J. Neurophysiol. 74, 1929–1937 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Mercer, A.R., Kloppenburg, P. & Hildebrand, J.G. J. Neurophysiol. 93, 1949–1958 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Derjean, D., Bertrand, S., Nagy, F. & Shefchyk, S.J. J. Physiol. (Lond.) 563, 583–596 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Angstadt, J.D. & Choo, J.J. J. Neurophysiol. 76, 1491–1502 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Di Prisco, G.V., Pearlstein, E., Robitaille, R. & Dubuc, R. Science 278, 1122–1125 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Susswein, A.J., Hurwitz, I., Thorne, R., Byrne, J.H. & Baxter, D.A. J. Neurophysiol. 87, 2307–2323 (2002).

    Article  Google Scholar 

  25. 25

    Sierra, F., Comas, V., Buno, W. & Macadar, O. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191, 1–11 (2004).

    Article  Google Scholar 

  26. 26

    Scroggs, R.S. & Anderson, E.G. Brain Res. 485, 391–395 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Niebur, E. & Erdos, P. Biophys. J. 60, 1132–1146 (1991).

    CAS  Article  Google Scholar 

  28. 28

    Thomas, J.H. Genetics 124, 855–872 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Hart, A.C., Sims, S. & Kaplan, J.M. Nature 378, 82–85 (1995).

    CAS  Article  Google Scholar 

  30. 30

    Rankin, C.H. Curr. Biol. 14, R617–R618 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Chalasani, S.H. et al. Nature 450, 63–70 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Suzuki, H. et al. Nature 454, 114–117 (2008).

    CAS  Article  Google Scholar 

  33. 33

    O'Hagan, R., Chalfie, M. & Goodman, M.B. Nat. Neurosci. 8, 43–50 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Ramot, D., Macinnis, B.L. & Goodman, M.B. Nat Neurosci. 11, 908–915 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Strassberg, A.F. & DeFelice, L.J. Neural Comput. 5, 843–855 (1993).

    Article  Google Scholar 

  36. 36

    Faisal, A.A., White, J.A. & Laughlin, S.B. Curr. Biol. 15, 1143–1149 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Faisal, A.A. & Laughlin, S.B. PLoS Comput. Biol. 3, e79 (2007).

    Article  Google Scholar 

  38. 38

    Hall, D.H. & Altun, Z. C. elegans Atlas (Cold Spring Harbor Press, Woodbury, New York, 2008).

    Google Scholar 

  39. 39

    Bargmann, C.I. Science 282, 2028–2033 (1998).

    CAS  Article  Google Scholar 

  40. 40

    Chronis, N., Zimmer, M. & Bargmann, C.I. Nat. Methods 4, 727–731 (2007).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lockery, S., Goodman, M. The quest for action potentials in C. elegans neurons hits a plateau. Nat Neurosci 12, 377–378 (2009). https://doi.org/10.1038/nn0409-377

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing