Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The quest for action potentials in C. elegans neurons hits a plateau

The small size and high resistance of C. elegans neurons makes them sensitive to the random opening of single ion channels, probably rendering codes that are based on classical, all-or-none action potentials unworkable. The recent discovery in C. elegans of a special class of regenerative events known as plateau potentials introduces the possibility of digital neural codes. Such codes would solve the problem of representing information in nervous systems in which action potentials are unreliable.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representations of regenerative events.

References

  1. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  2. Goodman, M.B., Hall, D.H., Avery, L. & Lockery, S.R. Neuron 20, 763–772 (1998).

    Article  CAS  Google Scholar 

  3. Brockie, P.J., Mellem, J.E., Hills, T., Madsen, D.M. & Maricq, A.V. Neuron 31, 617–630 (2001).

    Article  CAS  Google Scholar 

  4. Christensen, M. et al. Neuron 33, 503–514 (2002).

    Article  CAS  Google Scholar 

  5. Nickell, W.T., Pun, R.Y., Bargmann, C.I. & Kleene, S.J. J. Membr. Biol. 189, 55–66 (2002).

    Article  CAS  Google Scholar 

  6. Mellem, J.E., Brockie, P.J., Madsen, D.M. & Maricq, A.V. Nat. Neurosci. 11, 865–867 (2008).

    Article  CAS  Google Scholar 

  7. Marder, E. Curr. Biol. 1, 326–327 (1991).

    Article  CAS  Google Scholar 

  8. Russell, D.F. & Hartline, D.K. J. Neurophysiol. 48, 914–937 (1982).

    Article  CAS  Google Scholar 

  9. Davis, R.E. & Stretton, A.O.W. J. Neurosci. 9, 415–425 (1989).

    Article  CAS  Google Scholar 

  10. Angstadt, J.D. & Stretton, A.O.W. J. Comp. Physiol. [A] 166, 165–177 (1989).

    Article  CAS  Google Scholar 

  11. Angstadt, J.D., Donmoyer, J.E. & Stretton, A.O. J. Comp. Neurol. 284, 374–388 (1989).

    Article  CAS  Google Scholar 

  12. Holden-Dye, L. & Walker, R.J. Parasitology 108, 81–87 (1994).

    Article  Google Scholar 

  13. Davis, R.E. & Stretton, A.O.W. J. Comp. Physiol. [A] 171, 17–28 (1992).

    Article  CAS  Google Scholar 

  14. Lee, C.R. & Tepper, J.M. J. Neurosci. 27, 6531–6541 (2007).

    Article  CAS  Google Scholar 

  15. Lo, F.S., Ziburkus, J. & Guido, W. J. Neurophysiol. 87, 1175–1185 (2002).

    Article  CAS  Google Scholar 

  16. Otsuka, T., Abe, T., Tsukagawa, T. & Song, W.J. J. Neurophysiol. 92, 255–264 (2004).

    Article  Google Scholar 

  17. Simon, M., Perrier, J.F. & Hounsgaard, J. Eur. J. Neurosci. 18, 258–266 (2003).

    Article  Google Scholar 

  18. Amat, C., Lapied, B., French, A.S. & Hue, B. J. Neurophysiol. 80, 2718–2726 (1998).

    Article  CAS  Google Scholar 

  19. Zhang, B. & Harris-Warrick, R.M. J. Neurophysiol. 74, 1929–1937 (1995).

    Article  CAS  Google Scholar 

  20. Mercer, A.R., Kloppenburg, P. & Hildebrand, J.G. J. Neurophysiol. 93, 1949–1958 (2005).

    Article  CAS  Google Scholar 

  21. Derjean, D., Bertrand, S., Nagy, F. & Shefchyk, S.J. J. Physiol. (Lond.) 563, 583–596 (2005).

    Article  CAS  Google Scholar 

  22. Angstadt, J.D. & Choo, J.J. J. Neurophysiol. 76, 1491–1502 (1996).

    Article  CAS  Google Scholar 

  23. Di Prisco, G.V., Pearlstein, E., Robitaille, R. & Dubuc, R. Science 278, 1122–1125 (1997).

    Article  CAS  Google Scholar 

  24. Susswein, A.J., Hurwitz, I., Thorne, R., Byrne, J.H. & Baxter, D.A. J. Neurophysiol. 87, 2307–2323 (2002).

    Article  Google Scholar 

  25. Sierra, F., Comas, V., Buno, W. & Macadar, O. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191, 1–11 (2004).

    Article  Google Scholar 

  26. Scroggs, R.S. & Anderson, E.G. Brain Res. 485, 391–395 (1989).

    Article  CAS  Google Scholar 

  27. Niebur, E. & Erdos, P. Biophys. J. 60, 1132–1146 (1991).

    Article  CAS  Google Scholar 

  28. Thomas, J.H. Genetics 124, 855–872 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hart, A.C., Sims, S. & Kaplan, J.M. Nature 378, 82–85 (1995).

    Article  CAS  Google Scholar 

  30. Rankin, C.H. Curr. Biol. 14, R617–R618 (2004).

    Article  CAS  Google Scholar 

  31. Chalasani, S.H. et al. Nature 450, 63–70 (2007).

    Article  CAS  Google Scholar 

  32. Suzuki, H. et al. Nature 454, 114–117 (2008).

    Article  CAS  Google Scholar 

  33. O'Hagan, R., Chalfie, M. & Goodman, M.B. Nat. Neurosci. 8, 43–50 (2005).

    Article  CAS  Google Scholar 

  34. Ramot, D., Macinnis, B.L. & Goodman, M.B. Nat Neurosci. 11, 908–915 (2008).

    Article  CAS  Google Scholar 

  35. Strassberg, A.F. & DeFelice, L.J. Neural Comput. 5, 843–855 (1993).

    Article  Google Scholar 

  36. Faisal, A.A., White, J.A. & Laughlin, S.B. Curr. Biol. 15, 1143–1149 (2005).

    Article  CAS  Google Scholar 

  37. Faisal, A.A. & Laughlin, S.B. PLoS Comput. Biol. 3, e79 (2007).

    Article  Google Scholar 

  38. Hall, D.H. & Altun, Z. C. elegans Atlas (Cold Spring Harbor Press, Woodbury, New York, 2008).

    Google Scholar 

  39. Bargmann, C.I. Science 282, 2028–2033 (1998).

    Article  CAS  Google Scholar 

  40. Chronis, N., Zimmer, M. & Bargmann, C.I. Nat. Methods 4, 727–731 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockery, S., Goodman, M. The quest for action potentials in C. elegans neurons hits a plateau. Nat Neurosci 12, 377–378 (2009). https://doi.org/10.1038/nn0409-377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0409-377

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing