The small size and high resistance of C. elegans neurons makes them sensitive to the random opening of single ion channels, probably rendering codes that are based on classical, all-or-none action potentials unworkable. The recent discovery in C. elegans of a special class of regenerative events known as plateau potentials introduces the possibility of digital neural codes. Such codes would solve the problem of representing information in nervous systems in which action potentials are unreliable.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A reverse-engineering approach to building our understanding of nervous systems
BMC Neuroscience Open Access 21 July 2014
-
Neuronal aging: learning from <em>C. elegans</em>
Journal of Molecular Signaling Open Access 10 December 2013
-
Neural coding in a single sensory neuron controlling opposite seeking behaviours in Caenorhabditis elegans
Nature Communications Open Access 14 June 2011
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).
Goodman, M.B., Hall, D.H., Avery, L. & Lockery, S.R. Neuron 20, 763–772 (1998).
Brockie, P.J., Mellem, J.E., Hills, T., Madsen, D.M. & Maricq, A.V. Neuron 31, 617–630 (2001).
Christensen, M. et al. Neuron 33, 503–514 (2002).
Nickell, W.T., Pun, R.Y., Bargmann, C.I. & Kleene, S.J. J. Membr. Biol. 189, 55–66 (2002).
Mellem, J.E., Brockie, P.J., Madsen, D.M. & Maricq, A.V. Nat. Neurosci. 11, 865–867 (2008).
Marder, E. Curr. Biol. 1, 326–327 (1991).
Russell, D.F. & Hartline, D.K. J. Neurophysiol. 48, 914–937 (1982).
Davis, R.E. & Stretton, A.O.W. J. Neurosci. 9, 415–425 (1989).
Angstadt, J.D. & Stretton, A.O.W. J. Comp. Physiol. [A] 166, 165–177 (1989).
Angstadt, J.D., Donmoyer, J.E. & Stretton, A.O. J. Comp. Neurol. 284, 374–388 (1989).
Holden-Dye, L. & Walker, R.J. Parasitology 108, 81–87 (1994).
Davis, R.E. & Stretton, A.O.W. J. Comp. Physiol. [A] 171, 17–28 (1992).
Lee, C.R. & Tepper, J.M. J. Neurosci. 27, 6531–6541 (2007).
Lo, F.S., Ziburkus, J. & Guido, W. J. Neurophysiol. 87, 1175–1185 (2002).
Otsuka, T., Abe, T., Tsukagawa, T. & Song, W.J. J. Neurophysiol. 92, 255–264 (2004).
Simon, M., Perrier, J.F. & Hounsgaard, J. Eur. J. Neurosci. 18, 258–266 (2003).
Amat, C., Lapied, B., French, A.S. & Hue, B. J. Neurophysiol. 80, 2718–2726 (1998).
Zhang, B. & Harris-Warrick, R.M. J. Neurophysiol. 74, 1929–1937 (1995).
Mercer, A.R., Kloppenburg, P. & Hildebrand, J.G. J. Neurophysiol. 93, 1949–1958 (2005).
Derjean, D., Bertrand, S., Nagy, F. & Shefchyk, S.J. J. Physiol. (Lond.) 563, 583–596 (2005).
Angstadt, J.D. & Choo, J.J. J. Neurophysiol. 76, 1491–1502 (1996).
Di Prisco, G.V., Pearlstein, E., Robitaille, R. & Dubuc, R. Science 278, 1122–1125 (1997).
Susswein, A.J., Hurwitz, I., Thorne, R., Byrne, J.H. & Baxter, D.A. J. Neurophysiol. 87, 2307–2323 (2002).
Sierra, F., Comas, V., Buno, W. & Macadar, O. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191, 1–11 (2004).
Scroggs, R.S. & Anderson, E.G. Brain Res. 485, 391–395 (1989).
Niebur, E. & Erdos, P. Biophys. J. 60, 1132–1146 (1991).
Thomas, J.H. Genetics 124, 855–872 (1990).
Hart, A.C., Sims, S. & Kaplan, J.M. Nature 378, 82–85 (1995).
Rankin, C.H. Curr. Biol. 14, R617–R618 (2004).
Chalasani, S.H. et al. Nature 450, 63–70 (2007).
Suzuki, H. et al. Nature 454, 114–117 (2008).
O'Hagan, R., Chalfie, M. & Goodman, M.B. Nat. Neurosci. 8, 43–50 (2005).
Ramot, D., Macinnis, B.L. & Goodman, M.B. Nat Neurosci. 11, 908–915 (2008).
Strassberg, A.F. & DeFelice, L.J. Neural Comput. 5, 843–855 (1993).
Faisal, A.A., White, J.A. & Laughlin, S.B. Curr. Biol. 15, 1143–1149 (2005).
Faisal, A.A. & Laughlin, S.B. PLoS Comput. Biol. 3, e79 (2007).
Hall, D.H. & Altun, Z. C. elegans Atlas (Cold Spring Harbor Press, Woodbury, New York, 2008).
Bargmann, C.I. Science 282, 2028–2033 (1998).
Chronis, N., Zimmer, M. & Bargmann, C.I. Nat. Methods 4, 727–731 (2007).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lockery, S., Goodman, M. The quest for action potentials in C. elegans neurons hits a plateau. Nat Neurosci 12, 377–378 (2009). https://doi.org/10.1038/nn0409-377
Issue Date:
DOI: https://doi.org/10.1038/nn0409-377
This article is cited by
-
Structural aspects of the aging invertebrate brain
Cell and Tissue Research (2021)
-
A reverse-engineering approach to building our understanding of nervous systems
BMC Neuroscience (2014)
-
Neuronal aging: learning from <em>C. elegans</em>
Journal of Molecular Signaling (2013)
-
Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light
Nature Methods (2013)
-
Exploring the Central Modulation Hypothesis: Do Ancient Memory Mechanisms Underlie the Pathophysiology of Trigger Points?
Current Pain and Headache Reports (2013)