Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of the left amygdala to a cognitive representation of fear


We examined the neural substrates involved when subjects encountered an event linked verbally, but not experientially, to an aversive outcome. This instructed fear task models a primary way humans learn about the emotional nature of events. Subjects were told that one stimulus (threat) represents an aversive event (a shock may be given), whereas another (safe) represents safety (no shock will be given). Using functional magnetic resonance imaging (fMRI), activation of the left amygdala was observed in response to threat versus safe conditions, which correlated with the expression of the fear response as measured by skin conductance. Additional activation observed in the insular cortex is proposed to be involved in conveying a cortical representation of fear to the amygdala. These results suggest that the neural substrates that support conditioned fear across species have a similar but somewhat different role in more abstract representations of fear in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Threat versus safe activation.
Figure 2: Time course of amygdala activation.
Figure 3: Correlation between SCR and activation strength for amygdala and insular cortex.

Similar content being viewed by others


  1. Davis, M. Neurobiology of fear responses: the role of the amygdala. J. Neuropsychiatry Clin. Neurosci. 9, 382–402 (1997).

    Article  CAS  Google Scholar 

  2. Kapp, B. S., Pascoe, J. P. & Bixler, M. A. in The Neuropsychology of Memory (eds. Butters, N. & Squire, L. S.) 473–488 (Guilford, New York, 1984).

    Google Scholar 

  3. LeDoux, J. E. The Emotional Brain (Simon & Schuster, New York, 1996)

    Google Scholar 

  4. Bechara, A. et al. Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269, 1115–1118 (1995)

    Article  CAS  Google Scholar 

  5. LaBar, K. S., LeDoux, J. E., Spencer, D. D. & Phelps, E. A. Impared fear conditioning following unilateral temporal lobectomy in humans. J. Neurosci. 15, 6846–6855 (1995).

    Article  CAS  Google Scholar 

  6. Deane, G. E. Human heart rate responses during experimentally induced anxiety. J. Exp. Psychol. 61, 489–493 (1961).

    Article  CAS  Google Scholar 

  7. Grillon, C., Ameli, R., Woods, S. W., Merikangas, K. & Davis, M. Fear potentiated startle in humans: effects of anticipatory anxiety on the acoustic blink reflex. Psychophysiology 28, 588–595 (1991).

    Article  CAS  Google Scholar 

  8. Grillon, C. & Davis, M. Effects of stress and shock anticipation on prepulse inhibition of the startle reflex. Psychophysiology 34, 511–517 (1997).

    Article  CAS  Google Scholar 

  9. Breiter, H. C. et al. Response and habituation of the human amygdala during visual processing of facial expression. Neuron 17, 875–887 (1996).

    Article  CAS  Google Scholar 

  10. LaBar, K. S. Gatenby, J. C., Gore, J. C., LeDoux, J. E. & Phelps, E. A. Human amygdala activation during conditioned fear acquisition and extinction: a mixed trial fMRI study. Neuron 20, 937–945 (1998).

    Article  CAS  Google Scholar 

  11. Buchel, C., Morris, J., Dolan, R. J. & Friston, K. J. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron 20, 947–957 (1998).

    Article  CAS  Google Scholar 

  12. Quirk G. J., Armony, J. L. & LeDoux, J. E. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19, 613–624 (1997).

    Article  CAS  Google Scholar 

  13. Pascoe, J. P. & Kapp, B. S. Electrophysiological characteristics of amygdaloid central nucleus neurons in the awake rabbit. Brain Res. Bull. 14, 331–338 (1985).

    Article  CAS  Google Scholar 

  14. Maeda, H. Morimoto, H. & Yanagimoto, K. Response characteristics of amygdaloid neurons provoked by emotionally significant environmental stimuli in cats, with special reference to response durations. Can. J. Physiol. Pharmacol. 71, 374–378 (1993).

    Article  CAS  Google Scholar 

  15. Collins, D. R. & Pare, D. Reciprocal changes in the firing probability of lateral and central medial amygdala neurons. J. Neurosci. 19, 836–844 (1999).

    Article  CAS  Google Scholar 

  16. Rauch, S. L., van der Kolk, B. A., Fisler, R. E. & Alpert, N. M. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch. Gen. Psychiatry 53, 380–387 (1996).

    Article  CAS  Google Scholar 

  17. Morris, J. S., Ohmann, A. & Dolan, R. J. Conscious and unconscious emotional learning in the human amygdala. Nature 393, 467–470 (1998).

    Article  CAS  Google Scholar 

  18. Angrilli, A. et al. Startle reflex and emotion modulation impairment after a right amygdala lesion. Brain 119, 1991–2000 (1997).

    Article  Google Scholar 

  19. Funayama, E. S., Grillon, C. G., Davis, M. & Phelps, E. A. A double dissociation in the affective modulation of startle in humans: effects of unilateral temporal lobectomy. J. Cogn. Neurosci. (in press).

  20. Shi, C. J. & Cassell, M. D. Cascade projections from somatosensory cortex to the rat basolateral amygdala via the parietal insular cortex. J. Comp. Neurol. 399, 469–491 (1998).

    Article  CAS  Google Scholar 

  21. Ploghaus, A. et al. Dissociating pain from its anticipation in the human brain. Science 284, 1979–1981 (1999).

    Article  CAS  Google Scholar 

  22. Romanski, L. M. & LeDoux, J. E. Equipotentiality of thalamo-amygdala and thalamo-cortico-amygdala circuits in auditory fear conditioning. J. Neurosci. 12, 4501–4509 (1992).

    Article  CAS  Google Scholar 

  23. Shi, C.-J. & Davis, M. Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies. J. Neurosci. 19, 420–430 (1999).

    Article  CAS  Google Scholar 

  24. Bush, G. et al. The counting Stroop: an interference task specialized for functional neuroimaging: validation study with functional MRI. Hum. Brain Mapp. 6, 270–282 (1998)

    Article  CAS  Google Scholar 

  25. Lane, R. D., Fink G. R., Gereon, R., Chau, P. M. & Dolan, R. J. Neural activation during selective attention to subjective emotional responses. Neuroreport 8, 3969–3972 (1997).

    Article  CAS  Google Scholar 

  26. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

  27. Bullmore, E. et al. Statistical methods of estimation and interference for functional MR image analysis. Magn. Reson. Med. 35, 261–277 (1996).

    Article  CAS  Google Scholar 

  28. Constable, R. T. et al. Quantifying and comparing region-of-interest activation patterns in functional brain imaging: methodology considerations. Mag. Reson. Imaging 16, 289–300 (1998).

    Article  CAS  Google Scholar 

Download references


The authors acknowledge the inspiration of Charles Oakley. We also thank M. Nordan and K. LaBar for work on a pilot study. This research was supported by McDonnell-Pew Program in Cognitive Neuroscience 97-26 and National Institutes of Health grants MH50812 to E.A.P. and NS33332 to J.C.G.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Elizabeth A. Phelps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phelps, E., O'Connor, K., Gatenby, J. et al. Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci 4, 437–441 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing