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REPLY—Sensory signals are noisy, and noise
is unpredictable: so it is natural to suppose
the variability of reaction times to be due
to the time it takes to detect a noisy signal,
perhaps by integrating it until it diverges
‘significantly’ from background noise.
Although this is undoubtedly how a system
for detecting signals in the presence of noise
ought to behave, large data sets demon-
strate that when stimuli are well above their
thresholds, latencies are not in practice sta-
tistically distributed in the way such models
predict (Fig. 3). This suggests that the dom-
inant factor is not detection time, but lies
in some subsequent stage of processing that
is more variable still. For instance, to rec-
ognize a complex object, apart from detect-
ing the existence of its various components,
we need also to determine that they are in
some particular relationship to one anoth-
er. Recent neurophysiological studies of this
second stage of decision-making9,10 have
demonstrated rise-to-threshold mecha-
nisms distinct from detection of the under-
lying visual elements, and subject to their
own variability. With high-contrast stim-
uli, detection is quick, and latency is dom-
inated by the variability caused by this
second stage, as statistical analysis of neu-
ronal responses in the frontal eye field
shows11. The LATER model, which forms
the basis for our paper, describes this sec-
ond stage. In LATER, the variability does
not arise because of uncertainty in afferent
signals, but represents a mechanism of
deliberate and gratuitous randomization,
which has the biologically desirable func-
tion of making our actions unpredictable12.
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The origin of LATER lies not in detec-
tion theory, but in empirical analysis of
actual distributions13. Whereas modest
data sets may often be fitted by several
kinds of models, the very large sets need-
ed to provide a stringent test decide
unequivocally in favor of LATER, with
accurate prediction of the observed dis-
tributions well into the tail (Fig. 3); signal
detection models cannot do this. The dis-
tinct population of very rapid responses
that are often apparent can be explained
by a simple extension of LATER14, though
this seems an unprofitable area to pursue
at present: being so few, their distribution
can be fitted by several other perfectly
plausible hypotheses. Errors may arise
from competing LATER units corre-
sponding to incorrect responses, and
LATER provides a good prediction of
competitive behavior of this kind in the
case of countermanding tasks15 and where
subjects are offered an overt choice16. In
the same way, although our data sets were
large enough to demonstrate what we
wished to demonstrate—that LATER cor-
rectly predicts what happens when sub-
jects alter their criterion—they cannot
distinguish between different models
sharing the essential characteristic of rise-
to-threshold of some kind.

To summarize, some tasks—such as
responding to low-contrast spots—are dom-
inated by detection. In others, detection is
trivial, and it is decision that takes most of
the time. In the former case, reaction time is
diffusionist; the latter is LATER. Thus, two
models of reaction time may happily co-exist.

Fig. 3. Reciprobit plots of large-latency data
sets. (a) Manual key presses in response to a
visual stimulus, n = 825 (ref. 17). (b) Saccades
in response to visual stimuli in a step task 
(n = 1500) and an overlap task (n = 1900;
R.H.S.C., unpublished data). (c) Manual
responses to an auditory stimulus, n = 2040
(ref. 18). In each case, the data follow a reci-
normal distribution far into the tail (99.9%),
although at short latencies, a second process
is also evident.
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