Abstract
Visuospatial navigation in animals and human subjects is generally studied using maze exploration. We used functional MRI to observe brain activation in male and female subjects as they searched for the way out of a complex, three-dimensional, virtual-reality maze. Navigation activated the medial occipital gyri, lateral and medial parietal regions, posterior cingulate and parahippocampal gyri as well as the right hippocampus proper. Gender-specific group analysis revealed distinct activation of the left hippocampus in males, whereas females consistently recruited right parietal and right prefrontal cortex. Thus we demonstrate a neural substrate of well established human gender differences in spatial-cognition performance.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Paving the way to better understand the effects of prolonged spaceflight on operational performance and its neural bases
npj Microgravity Open Access 31 July 2023
-
Stereotypes and self-reports about spatial cognition: Impact of gender and age
Current Psychology Open Access 08 October 2022
-
Sex and strategy effects on brain activation during a 3D-navigation task
Communications Biology Open Access 16 March 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Astur, R. S., Ortiz, M. L. & Sutherland, R. J. A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behav. Brain. Res. 93, 185–190 (1998).
Moffat, E., Hampson, E. & Hatzipantelis, M. Navigation in a ‘virtual’ maze: sex differences and correlation with psychometric measures of spatial ability in humans. Evol. Hum. Behav. 19, 73–87 (1998).
Milner, B. Visually-guided maze learning in man: effects of bilateral hippocampal, bilateral frontal, and unilateral cerebral lesions. Neuropsychologia 3, 317–338 (1965).
Pigott, S. & Milner, B. Memory for different aspects of complex visual scenes after unilateral temporal- or frontal-lobe resection. Neuropsychologia 31, 1–15 (1993).
Smith, M. L. & Milner, B. The role of the right hippocampus in the recall of spatial location. Neuropsychologia 19, 781–793 (1981).
Petrides, M. Deficits on conditional associative-learning tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 23, 601–614 (1985).
Nunn, J. A., Graydon, F. J., Polkey, C. E. & Morris, R. G. Differential spatial memory impairment after right temporal lobectomy demonstrated using temporal titration. Brain 122, 47–59 (1999).
Burgess, N., Jeffery, K. J. & O'Keefe, J. in The Hippocampal and Parietal Foundations of Spatial Cognition (eds. Burgess, N., Jeffery, K. J. & O'Keefe, J.) 3–29 (Oxford Univ. Press, Oxford, 1999).
Corsi, P. M. Human Memory and the Medial Temporal Region of the Brain. Thesis, McGill Univ. (1972).
O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain. Res. 34, 171–175 (1971).
Muller, R. U., Kubie, J. L. & Ranck, J. B. J. Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J. Neurosci. 7, 1935–1950 (1987).
Rolls, E. T. A theory of hippocampal function in memory. Hippocampus 6, 601–620 (1996).
Feigenbaum, J. D. & Rolls, E. T. Allocentric and egocentric information processing in the hippocampal formation of the behaving primate. Psychobiology 19, 21–40 (1991).
O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, 1978).
Thier, P. & Andersen, R. A. Electrical microstimulation suggests two different forms of representation of head-centered space in the intraparietal sulcus of rhesus monkeys. Proc. Natl. Acad. Sci. USA 93, 4962–4967 (1996).
Seltzer, B. & Pandya, D. N. Further observations on parieto-temporal connections in the rhesus monkey. Exp. Brain Res. 55, 301–312 (1984).
Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350, 497–533 (1994).
Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477–485 (1995).
Owen, A. M., Evans, A. C. & Petrides, M. Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cereb. Cortex 6, 31–38 (1996).
Salmon, E. et al. Regional brain activity during working memory tasks. Brain 119, 1617–1625 (1996).
Porteus, S. D. Mental tests for the feebleminded: a new series. J. Psycho-Asthenics 12, 200–213 (1915).
Porteus, S. D. The Maze Test and Clinical Psychology (Pacific, Palo Alto, 1959).
Berthoz, A. Parietal and hippocampal contribution to topokinetic and topographic memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1437–1448 (1997).
Flitman, S., O'Grady, J., Cooper, V. & Grafman, J. PET imaging of maze processing. Neuropsychologia 35, 409–420 (1997).
Ghaem, O. et al. Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport 8, 739–744 (1997).
Van Horn, J. D. et al. Changing patterns of brain activation during maze learning. Brain. Res. 793, 29–38 (1998).
Maguire, E. A., Frackowiak, R. S. & Frith, C. D. Learning to find your way: a role for the human hippocampal formation. Proc. R. Soc. Lond. B Biol. Sci. 263, 1745–1750 (1996).
Maguire, E. A., Frackowiak, R. S. J. & Frith, C. D. Recalling routes around London: activation of the right hippocampus in taxi drivers. J. Neurosci. 17, 7103–7110 (1997).
Aguirre, G. K., Detre, J. A., Alsop, D. C. & D'Esposito, M. The parahippocampus subserves topographical learning in man. Cereb. Cortex 6, 823–829 (1996).
Maguire, E. A., Frith, C. D., Burgess, N., Donnett, J. G. & O'Keefe, J. Knowing where things are parahippocampal involvement in encoding object locations in virtual large-scale space. J. Cogn. Neurosci. 10, 61–76 (1998).
Maguire, E. A. et al. Knowing where and getting there: a human navigation network. Science 280, 921–924 (1998).
Kolb, B. & Cioe, J. Sex-related differences in cortical function after medial frontal lesions in rats. Behav. Neurosci. 110, 1271–1281 (1996).
Roof, R. L., Zhang, Q., Glasier, M. M. & Stein, D. G. Gender-specific impairment on Morris water maze task after entorhinal cortex lesion. Behav. Brain. Res. 57, 47–51 (1993).
Maguire, E. A. in The Hippocampal and Parietal Foundations of Spatial Cognition (eds. Burgess, N., Jeffery, K. J. & O'Keefe, J.) 404–415 (Oxford Univ. Press, Oxford, 1999).
Epstein, R., Harris, A., Stanley, D. & Kanwisher, N. The parahippocampal place area: recognition, navigation, or encoding? Neuron 23, 115–125 (1999).
Colby, C. L. in The Hippocampal and Parietal Foundations of Spatial Cognition (eds. Burgess, N., Jeffery, K. J. & O'Keefe, J.) 104–126 (Oxford Univ. Press, Oxford, 1999).
Shallice, T. et al. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368, 633–635 (1994).
Fletcher, P. C. et al. Brain systems for encoding and retrieval of auditory-verbal memory. An in vivo study in humans. Brain 118, 401–416 (1995).
Fletcher, P. C., Shallice, T., Frith, C. D., Frackowiak, R. S. & Dolan, R. J. Brain activity during memory retrieval. The influence of imagery and semantic cueing. Brain 119, 1587–1596 (1996).
Roland, P. E. & Gulyas, B. Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: functional anatomy by positron emission tomography. Cereb. Cortex 5, 79–93 (1995).
Cabeza, R. et al. Brain regions differentially involved in remembering what and when: a PET study. Neuron 19, 863–870 (1997).
Mishkin, M., Ungerleider, L. G. & Macko, K. A. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414–417 (1983).
Sandstrom, N. J., Kaufman, J. & Huettel, S. A. Males and females use different distal cues in a virtual environment navigation task. Brain. Res. Cogn. Brain Res. 6, 351–360 (1998).
Vargha-Khadem, F. et al. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–380 (1997).
Strange, B. A., Fletcher, C., Henson, R. N., Friston, K. J. & Dolan, R. J. Segregating the functions of human hippocampus. Proc. Natl. Acad. Sci. USA 96, 4034–4039 (1999).
Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M. & Tanila, H. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23, 209–226 (1999).
Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).
Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme, Stuttgart, 1988).
Brodmann, K. Vergleichende Lokalisationslehre der Groβhirnrinde (Barth, Leipzig, 1909).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Grön, G., Wunderlich, A., Spitzer, M. et al. Brain activation during human navigation: gender-different neural networks as substrate of performance. Nat Neurosci 3, 404–408 (2000). https://doi.org/10.1038/73980
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/73980
This article is cited by
-
Paving the way to better understand the effects of prolonged spaceflight on operational performance and its neural bases
npj Microgravity (2023)
-
Sex differences in the neural underpinnings of unimanual and bimanual control in adults
Experimental Brain Research (2023)
-
Sex and strategy effects on brain activation during a 3D-navigation task
Communications Biology (2022)
-
Stereotypes and self-reports about spatial cognition: Impact of gender and age
Current Psychology (2022)
-
Walking on a minefield: planning, remembering, and avoiding obstacles: preliminary findings
Experimental Brain Research (2022)