Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Seeing multiple directions of motion—physiology and psychophysics

Abstract

Dot patterns sliding transparently across one another are normally perceived as independently moving surfaces. Recordings from direction-selective neurons in area MT of the macaque suggested that this perceptual segregation did not depend on the presence of two peaks in the population activity. Rather, the visual system seemed to use overall shape of the population response to determine the number and directions of motion components. This approach explained a number of perceptual phenomena, including susceptibility of the motion system to direction metamers, motion patterns combining three or five directions incorrectly perceived by subjects as comprising only two directions. Our findings offer insights into the coding of multi-valued sensory signals and provide constraints for biologically based computational models.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Direction-tuning curves and hypothetical population responses to transparent patterns.
Figure 2: Population activity profiles for transparent motion of various angles.
Figure 3: Psychophysical stimuli.
Figure 4: Psychophysical results.

References

  1. Graziano, M. S. A., Andersen, R. A. & Snowden, R. J. Tuning of MST neurons to spiral motions. J. Neurosci. 14, 54–67 ( 1994).

    Article  CAS  Google Scholar 

  2. Albright, T. D. Direction and orientation selectivity of neurons in visual area MT of the macaque. J. Neurophysiol. 52, 1106– 1130 (1984).

    Article  CAS  Google Scholar 

  3. Snowden, R. J., Treue, S. & Andersen, R. A. The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns. Exp. Brain Res. 88, 389–400 ( 1992).

    Article  CAS  Google Scholar 

  4. Britten, K. H. & Newsome, W. T. Tuning bandwidth for near-threshold stimuli in area MT. J. Neurophysiol. 80, 762–770 (1998).

    Article  CAS  Google Scholar 

  5. Williams, D. & Sekuler, R. Coherent global motion percepts from stochastic local motions. Vis. Res. 24, 55–62 (1984).

    Article  CAS  Google Scholar 

  6. Pasternak, T., Albano, J. E. & Harvitt, D. M. The role of directionally selective neurons in the perception of global motion. J. Neurosci. 10, 3079–3086 (1990).

    Article  CAS  Google Scholar 

  7. Jasinschi, R., Rosenfeld, A. & Sumi, K. Perceptual motion transparency: the role of geometrical information. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 9, 1865–1879 (1992).

    Article  Google Scholar 

  8. Mulligan, J. B. Motion transparency is restricted to two planes. Invest. Ophthalmol. Vis. Sci. Suppl. (1992).

  9. Verstraten, F. A., Fredericksen, R. E. & Van de Grind, W. A. Movement aftereffect of bi-vectorial transparent motion. Vis. Res. 34, 349– 358 (1994).

    Article  CAS  Google Scholar 

  10. Grunewald, A. & Lankheet, M. J. M. Orthogonal motion after-effect illusion predicted by a model of cortical motion processing. Nature 384, 358–360 ( 1996).

    Article  CAS  Google Scholar 

  11. Wilson, H. R. & Kim, J. A model for motion coherence and transparency . Vis. Neurosci. 11, 1205– 1220 (1994).

    Article  CAS  Google Scholar 

  12. van Wezel, R. J. A. et al. Responses of complex cells in area 17 of the cat to bi-vectorial transparent motion. Vis. Res. 36, 2805– 2813 (1996).

    Article  CAS  Google Scholar 

  13. Recanzone, G. H., Wurtz, R. H. & Schwarz, U. Responses of MT and MST neurons to one and two moving objects in the receptive field. J. Neurophysiol. 78 , 2904–2915 (1997).

    Article  CAS  Google Scholar 

  14. Mather, G. & Moulden, B. A simultaneous shift in apparent directions: Further evidence for a ‘distribution-shift’ model of direction coding. Q. J. Exp. Psychol. 32, 325–333 (1980).

    Article  CAS  Google Scholar 

  15. Salzman, C. D. & Newsome, W. T. Neural mechanisms for forming a perceptual decision. Science 264 231–237(1994).

    Article  CAS  Google Scholar 

  16. Williams, D., Tweten, S. & Sekuler, R. Using metamers to explore motion perception. Vis. Res. 31, 275–286 ( 1991).

    Article  CAS  Google Scholar 

  17. Maunsell, J. H. R. & Van Essen, D. C. Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J. Neurophysiol. 49, 1148–1167 (1983).

    Article  CAS  Google Scholar 

  18. Bradley, D. C., Qian, N. & Andersen, R. A. Integration of motion and stereopsis in middle temporal cortical area of macaques. Nature 373, 609 –611 (1995).

    Article  CAS  Google Scholar 

  19. DeAngelis, G. C., Cumming, B. G. & Newsome, W. T. Cortical area MT and the perception of stereoscopic depth. Nature 394, 677– 680 (1998).

    Article  CAS  Google Scholar 

  20. Croner, L. J. & Albright, T. D. Image segmentation enhances discrimination of motion in visual noise. Vis. Res. 37, 1415–1427 (1997).

    Article  CAS  Google Scholar 

  21. Croner, L. J. & Albright, T. D. Segmentation by color influences responses of motion-sensitive neurons in the cortical middle temporal visual area. J. Neurosci. 19, 3935– 3951 (1999).

    Article  CAS  Google Scholar 

  22. Zeki, S. M. The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 217, 449–470 ( 1983).

    Article  CAS  Google Scholar 

  23. Saito, H., Tanaka, K., Isono, H., Yasuda, M. & Mikami, A. Directionally selective responses of cells in the middle temporal temporal area (MT) of the macaque monkey to the movement of equiluminous opponent color stimuli. Exp. Brain Res. 75, 1–14 (1989).

    Article  CAS  Google Scholar 

  24. Deneve, S., Latham, P. E. & Pouget, A. Reading population codes: A neural implementation of ideal observers. Nat. Neurosci. 2, 740– 745 (1999).

    Article  CAS  Google Scholar 

  25. Watamaniuk, S. N. J. & Duchon, A. The human visual system averages speed information. Vis. Res. 32, 931–941 (1992).

    Article  CAS  Google Scholar 

  26. Watamaniuk, S. N. J. Ideal observer for discrimination of the global direction of dynamic random-dot stimuli. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 10 , 16–28 (1993).

    Article  CAS  Google Scholar 

  27. Zohary, E., Scase, M. O. & Braddick, O. J. Integration across directions in dynamic random dot displays: Vector summation or winner take all? Vis. Res. 36, 2321–2331 (1996).

    Article  CAS  Google Scholar 

  28. Marshak, W. M. & Sekuler, R. Mutual repulsion between moving visual targets. Science 205, 1399–1401 (1979).

    Article  CAS  Google Scholar 

  29. Rauber, H. J. & Treue, S. Revisiting motion repulsion: Evidence for a general phenomenon. Vis. Res. 39, 3187–3196 (1999).

    Article  CAS  Google Scholar 

  30. Van Der Smagt, M. J., Verstraten, F. A. J. & Van De Grind, W. A. A new transparent motion aftereffect . Nat. Neurosci. 2, 595– 596 (1999).

    Article  CAS  Google Scholar 

  31. Qian, N., Andersen, R. A. & Adelson, E. H. Transparent motion perception as detection of unbalanced motion signals III: Modeling. J. Neurosci. 14, 7381–7392 (1994).

    Article  CAS  Google Scholar 

  32. Qian, N., Andersen, R. & Adelson, E. H. Transparent motion perception as detection of unbalanced motion signals I: Psychophysics. J. Neurosci. 14, 7357–7366 (1994).

    Article  CAS  Google Scholar 

  33. Braddick, O. Local and global representations of velocity: transparency, opponency, and global direction perception. Perception 26, 995–1010 (1997).

    Article  CAS  Google Scholar 

  34. Zemel, R. S., Dayan, P. & Pouget, A. Probabilistic interpretation of population codes. Neural Comput. 10, 403–430 (1998).

    Article  CAS  Google Scholar 

  35. Zemel, R. S. & Dayan, P. Advances in Neural Information Processing Systems Vol. 11 (MIT Press, Cambridge, Massachusetts, in press).

  36. Simoncelli, E. P. & Heeger, D. J. A model of neural responses in visual area MT. Vis. Res. 38, 743–761 (1998).

    Article  CAS  Google Scholar 

  37. Wang, R. Y. A network model of motion processing in area MT of primates. J. Comput. Neurosci. 4, 287–308 (1997).

    Article  CAS  Google Scholar 

  38. Treue, S. & Maunsell, J. H. R. Effects of attention on the processing of motion in macaque visual cortical areas MT and MST. J. Neurosci. 19, 7603–7616 (1999).

    Article  Google Scholar 

  39. Schoppmann, A. & Hoffmann, K. P. Continuous mapping of direction selectivity in the cat's visual cortex. Neurosci. Lett. 2, 177–181 ( 1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the MWF Baden-Württemberg. We are grateful to O. Braddick, N. Qian and R.S. Zemel for comments on previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Treue.

Supplementary information

Figure 1

(GIF 1.4 MB)

An animated visualization of our model. The model assumes that the neuronal population response across direction-selective neurons to motion containing two direction components is the scaled sum of the responses to the individual components alone

For further information, animations and images, see the authors' web page at: http://www.uni-tuebingen.de/uni/knv/Treue/transparent_motion.html

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Treue, S., Hol, K. & Rauber, HJ. Seeing multiple directions of motion—physiology and psychophysics . Nat Neurosci 3, 270–276 (2000). https://doi.org/10.1038/72985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing