Article | Published:

Learning to find a shape

Nature Neurosciencevolume 3pages264269 (2000) | Download Citation

Subjects

Abstract

We studied the transition of stimuli from novel to familiar in visual search and in the guidance of attention to a particular object. Ability to identify an object improved dramatically over several days of training. The learning was specific for the object's position in the visual field, orientation and configuration. Improvement was initially localized to one or two positions near the fixation spot and then expanded radially to include the full area of the stimulus array. Characteristics of this learning process may reflect a shift in the cortical representation of complex features toward earlier stages in the visual pathway.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Treisman, A & Gelade, G. A feature integration theory of attention . Cognit. Psychol. 12, 97– 136 (1980).

  2. 2

    Sagi, D. & Julesz, B. ‘Where’ and ‘what’ in vision. Science 228, 1217– 1219 (1985).

  3. 3

    Duncan, J. & Humphrey, G. W. Visual search and stimulus similarity . Psychol. Rev. 96, 433– 458 (1989).

  4. 4

    Rubinstein, B. S. & Sagi, D. Spatial variability as a limiting factor in texture-discrimination tasks: implications for performance asymmetries. J. Opt. Soc. Am. A 7, 1632– 1643 (1990).

  5. 5

    Wang, Q., Cavanagh, P. & Green, M. Familiarity and pop-out in visual search. Percept. Psychophys. 56, 495–500 (1994).

  6. 6

    Maljovic, V. & Nakayama, K. Priming of pop-out detection: role of features. Mem. Cognit. 22, 657– 672 (1994).

  7. 7

    Maljovic, V. & Nakayama, K. Priming of pop-out: II. role of position. Percept. Psychophys. 58, 977– 991 (1996).

  8. 8

    Sireteanu, R. & Rettenbach, R. Perceptual learning in visual search: fast, enduring but non-specific. Vision Res. 35, 2037–2043 (1995).

  9. 9

    Efron, R. & Yund, E. W. Guided search: the effects of learning . Brain Cogn. 31, 369–386 (1996).

  10. 10

    Karni, A. & Sagi, D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl. Acad. Sci. USA 88, 4966– 4970 (1991).

  11. 11

    Schneider, W. & Shiffrin, R. M. Controlled and automatic human information processing: I. detection, search and attention. Psychol. Rev. 84, 1–66 ( 1977).

  12. 12

    Shiffrin, R. M. & Schneider, W. Controlled and automatic human information processing: II. perceptual learning, automatic attending and a general theory. Psychol. Rev. 84, 127–191 (1977).

  13. 13

    Treisman, A., Verira, A. & Hayes, A. Automaticity and preattentive processing. Annu. Rev. Neurosci. 105, 341–362 (1992).

  14. 14

    Ahissar, M. & Hochstein, S. Learning pop-out detection: specificities to stimulus characteristics. Vision Res. 36, 3487–3500 (1996).

  15. 15

    Braun, J. Vision and attention: the role of training. Nature 393, 424–425 (1998).

  16. 16

    Ahissar, M. & Hochstein, S. Attentional control of early perceptual learning. Proc. Natl. Acad. Sci. USA 90, 5718–5722 (1993).

  17. 17

    Ito, M., Westheimer, G. & Gilbert, C. D. Attention and perceptual learning modulate contextual influences on visual perception. Neuron 20, 1191–1197 (1998).

  18. 18

    Fahle, M. & Morgan, M. No transfer of perceptual learning between similar stimuli in the same retinal position. Curr. Biol. 6, 292–297 ( 1996).

  19. 19

    Crist, R. E, Kapadia, M., Westheimer, G. & Gilbert, C. D. Perceptual learning of spatial localization: specificity for orientation, position and context. J. Neurophysiol. 78, 2889–2894 (1997).

  20. 20

    Shiu, L. P. & Pashler, H. Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Percept. Psychophys. 52, 582–588 (1992).

  21. 21

    Ahissar, M. & Hochstein, S. Task difficulty and the specificity of perceptual learning. Nature 387, 401– 406 (1997).

  22. 22

    Bravo, M. J. & Nakayama, K. The role of attention in different visual search tasks. Percept. Psychophys. 51, 465–472 (1992).

  23. 23

    Wolfe, J. M. in Current Directions in Psychological Sciences 124– 128 (Cambridge Univ. Press, Cambridge, 1992).

  24. 24

    Wolfe, J. M., Cave, K. R. & Franzels, S. R. Guided Search: an alternative to the feature integration model of visual search. J. Exp. Psychol. Hum. Percept. Perform. 15, 419–433 ( 1989).

  25. 25

    Joseph, J. S., Chun, M. M. & Nakayama, K. Attentional requirements in a preattentive feature search task. Nature 387, 805–807 (1997).

  26. 26

    Chun, M. M. & Jiang, Y. Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognit. Psychol. 36, 28–71 ( 1998).

  27. 27

    Braun, J. & Sagi, D. Vision outside the focus of attention . Percept. Psychophys. 48, 45– 58 (1990).

  28. 28

    Nakayama, K. & Joseph, J. S. in The Attentive Brain (ed. Parasuraman, R.) 279–298 (MIT Press, Cambridge, Massachusetts 1997).

  29. 29

    Fiorentini, A. & Berardi, N. Learning in grating waveform discrimination: Specificity for orientation and spatial frequency . Vision Res. 21, 1149– 1158 (1981).

  30. 30

    Nazir, T. A. & O'Regan, J. K. Some results on translation invariances in the human visual system. Spat. Vis. 5, 81–100 (1990).

  31. 31

    Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. Improvements in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

  32. 32

    Posner, M. I. & Gilbert, C. D. Attention and primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 2585 –2587 (1999).

  33. 33

    Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J. & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492–496 (1995).

  34. 34

    Das, A. & Gilbert, C. D. Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature 399, 655–661 ( 1999).

  35. 35

    Darian-Smith, C. & Gilbert, C. D. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368, 737–740 ( 1994).

  36. 36

    Gilbert, C. D., Das, A., Ito, M., Kapadia, M. & Westheimer, G. Spatial integration and cortical dynamics. Proc. Natl. Acad. Sci. USA 93, 615– 622 (1996).

Download references

Acknowledgements

We thank R. Crist for discussions and comments on the manuscript. This work was supported by NIH grant EY07968 and a Burroughs Wellcome fellowship to M.S.

Author information

Affiliations

  1. The Rockefeller University, 1230 York Avenue, New York, 10021-6399, New York, USA

    • M. Sigman
    •  & C. D. Gilbert

Authors

  1. Search for M. Sigman in:

  2. Search for C. D. Gilbert in:

Corresponding author

Correspondence to C. D. Gilbert.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/72979

Further reading