Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lack of cortical contrast gain control in human photosensitive epilepsy

Abstract

Television and video games may be powerful triggers for visually induced epileptic seizures. To better understand the triggering elements of visual stimuli and cortical mechanisms of hyperexcitability, we examined eleven patients with idiopathic photosensitive epilepsy by recording visually evoked potentials (VEPs) in response to temporally modulated patterns of different contrast. For stimuli of low–medium, but not high, temporal frequency, the contrast dependence of VEP amplitude and latency is remarkably abnormal for luminance contrast (black–white), but not so for chromatic contrast (equiluminant red–green) stimuli. We conclude that cortical mechanisms of contrast gain control for pattern stimuli of relatively low temporal frequency and high luminance contrast are lacking or severely impaired in photosensitive subjects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Luminance-contrast gratings: effect of temporal frequency.
Figure 2: Luminance-contrast gratings: effect of contrast.
Figure 3: Luminance-contrast gratings of 4–10 Hz temporal frequency: effect of contrast in individual subjects.
Figure 4: Chromatic-contrast gratings: effect of temporal frequency and contrast.

Similar content being viewed by others

References

  1. Kasteleijn-Nolst Trenité, D. G. A. in Reflex Epilepsies and Reflex Seizures. Advances in Neurology (eds. Zifkin, B. Andermann, F. Beaumanoir, A. & Rowan, J.) 99–121 (Lippincott-Raven, Philadelphia, 1998).

    Google Scholar 

  2. Harding, G. F. A. & Jeavons, P. M. Photosensitive Epilepsy (Mac Keith, London, 1994).

    Google Scholar 

  3. Sullivan, K. Perplexity and outrage over TV show. 200 remain hospitalized in Japan after seizures from viewing cartoon. The Herald International Tribune December 19, 5 (1997).

  4. Ishida, S. et al. Photosensitive seizures provoked while viewing “Pocket Monsters” a made-for-television animation program in Japan. Epilepsia 39, 1340–1344 (1998).

    Article  CAS  Google Scholar 

  5. Christie, T. Death after an attack precipitated by playing Nintendo game. The Sun January 21, 5 (1993).

  6. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 30, 389–399 (1989).

  7. Wilkins, A. J., Darby, C. E. & Binnie, C. D. Neurophysiological aspects of pattern-sensitive epilepsy. Brain 102, 1–25 (1979).

    Article  CAS  Google Scholar 

  8. Binnie, C. D., Findlay, J. & Wilkins, A. J. Mechanisms of epileptogenesis in photosensitive epilepsy implied by the effects of moving patterns. Electroenceph. Clin. Neurophysiol. 61, 1–6 (1985).

    Article  CAS  Google Scholar 

  9. Guerrini, R. et al. Idiopathic photosensitive occipital lobe epilepsy [published erratum appears in Epilepsia 37, 310, 1996] Epilepsia 36, 9, 883–91 (1995).

    Google Scholar 

  10. Guerrini, R., Bonanni, P., Parmeggiani, L. & Belmonte, A. Adolescent onset of idiopathic photosensitive occipital epilepsy after remission of benign rolandic epilepsy. Epilepsia 38, 777–781 (1997).

    Article  CAS  Google Scholar 

  11. Porciatti, V., Burr, D. C., Morrone, C. & Fiorentini, A. The effects of ageing on the pattern electroretinogram and visual evoked potential in humans. Vision Res. 32, 1199–1209 (1992).

    Article  CAS  Google Scholar 

  12. Simon, F. The phase of PVEP in Maxwellian view: influence of contrast, spatial and temporal frequency. Vision Res. 32, 591–599 (1992).

    Article  CAS  Google Scholar 

  13. Campbell, F. W. & Maffei, L. Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J. Physiol. (Lond.) 207, 635–652 (1970).

    Article  CAS  Google Scholar 

  14. Carandini, M., Heeger, D. J. & Movshon, J. A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

    Article  CAS  Google Scholar 

  15. Shapley, R. M. & Victor, J.D. How the contrast gain control modifies the frequency response of cat retinal ganglion cells. J. Physiol. (Lond.) 318, 161–179 (1981).

    Article  CAS  Google Scholar 

  16. Geisler, W. S. & Albrecht, D. G. Cortical neurons: isolation of contrast gain control. Vision Res. 8, 149–1410 (1992).

    Google Scholar 

  17. Fiorentini, A., Porciatti, V., Morrone, M. C. & Burr, D. C. Visual ageing: unspecific decline of the responses to luminance and colour. Vision Res. 36, 3557–3566 (1996).

    Article  CAS  Google Scholar 

  18. Newmark, M. E. & Penry, J. K. Photosensitivity and Epilepsy (Raven, New York, 1979).

  19. Binnie, C. D. & Wilkins, A. J. in Reflex Epilepsies and Reflex Seizures. Advances in Neurology (eds. Zifkin, B., Andermann, F., Beaumanoir, A. & Rowan, J.) 123–138 (Lippicott-Raven, Philadelphia, 1998).

    Google Scholar 

  20. Binnie, C. D. in Epileptic Seizures and Syndrome (ed. Wolf, P.) 49–54 (John Libbey, London, 1994).

    Google Scholar 

  21. Guerrini, R. et al. in Reflex Epilepsies and Reflex Seizures. Advances in Neurology (eds. Zifkin, B., Andermann, F., Beaumanoir, A. & Rowan, J.) 159–178 (Lippincott-Raven, Philadelphia, 1998).

  22. Spekreijse, H., Tweel, L. H. & Zuidema, T. Contrast evoked responses in man. Vision Res. 13, 1577–1601 (1973).

    Article  CAS  Google Scholar 

  23. Albrecht, D. G. & Hamilton, D. B. Striate cortex of monkey and cat: contrast response function. J. Neurophysiol. 48, 217–237 (1982).

    Article  CAS  Google Scholar 

  24. Carandini, M. & Heeger, D. J. Summation and division by neurons in primate visual cortex. Science 264, 1333–1336 (1994).

    Article  CAS  Google Scholar 

  25. Morrone, M. C., Burr, D. C. & Speed, H. D. Cross-orientation inhibition in cat is GABA mediated. Exp. Brain Res. 67, 635–644 (1987).

    Article  CAS  Google Scholar 

  26. Bernardete, E. A. & Kaplan, E. The dynamics of primate M retinal ganglion cells. Vis. Neurosci. 16, 355–368 (1999).

    Google Scholar 

  27. Morrone, M. C., Porciatti, V., Fiorentini, A. & Burr, D. C. Pattern electroretinogram in response to chromatic stimuli: I Human. Vis. Neurosci. 11, 861–871 (1994).

    Article  CAS  Google Scholar 

  28. Wilkins, A. J., Binnie, C. D., Darby, C. E. & Kasteleijn-Nolst Trenité, D. G. A. in Reflex Seizures and Reflex Epilepsies (eds. Beaumanoir, A., Gastaut, H. & Naquet, R.) 153–162 (Editions Médicine & Hygiène, Geneva, 1989).

  29. Porciatti, V., Di Bartolo, E., Nardi, M. & Fiorentini, A. Responses to chromatic and luminance contrast in glaucoma: a psychophysical and electrophysiological study. Vision Res. 37, 1975–1987 (1997).

    Article  CAS  Google Scholar 

  30. Mullen, K. T. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. J. Physiol.(Lond.) 359, 381–400 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. C. Morrone for suggestions and discussion and C. Orsini for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Porciatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porciatti, V., Bonanni, P., Fiorentini, A. et al. Lack of cortical contrast gain control in human photosensitive epilepsy. Nat Neurosci 3, 259–263 (2000). https://doi.org/10.1038/72972

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing