Article | Published:

Muscles express motor patterns of non-innervating neural networks by filtering broad-band input

Nature Neurosciencevolume 3pages245250 (2000) | Download Citation

Subjects

Abstract

We describe three slow muscles that responded to low-frequency modulation of a high-frequency neuronal input and, consequently, could express the motor patterns of neural networks whose neurons did not directly innervate the muscles. Two of these muscles responded to different frequency components present in the same input, and as a result each muscle expressed the motor pattern of a different, non-innervating, neural network. In an analogous manner, the distinct dynamics of the multiple intracellular processes that most cells possess may allow each process to respond to, and hence differentiate among, specific frequency ranges present in broad-band input.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Partridge, L. D. Signal-handling characteristics of load-moving skeletal muscle. Am. J. Physiol. 210, 1178–1191 (1966).

  2. 2

    Smith, S. J., MacDermott, A. B. & Weight, F. F. Detection of intracellular Ca2+ transients in sympathetic neurones using arsenazo III. Nature 304, 350–352 (1983).

  3. 3

    Gamble, E. & Koch, C. The dynamics of free calcium in dendritic spines in response to repetitive synaptic input. Science 236, 1311–1315 (1987).

  4. 4

    Delaney, K. R., Zucker, R. S. & Tank, D. W. Calcium in motor nerve terminal associated with posttetanic potentiation. J. Neurosci. 9, 3558–3567 (1989).

  5. 5

    Breer, H., Boekhoff, I. & Tareilus, E. Rapid kinetics of second messenger formation in olfactory transduction. Nature 345, 65–68 (1990).

  6. 6

    Delaney, K. R. & Tank, D. W. A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium. J. Neurosci. 14, 5885–5902 (1994).

  7. 7

    Regehr, W. G., Delaney, K. R. & Tank, D. W. The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. J. Neurosci. 14, 523–537 (1994).

  8. 8

    Wang, S. S.-H, Alousi, A. A. & Thompson, S. H. The lifetime of inositol 1,4,5-triphosphate in single cells. J. Gen. Physiol. 105, 149–171 (1995).

  9. 9

    Feller, M. B., Delaney, K. R. & Tank, D. W. Presynaptic calcium dynamics at the frog retinotectal synapse. J. Neurophysiol. 76, 381–400 (1996).

  10. 10

    Helmchen, F., Imoto, K. & Sakmann, B. Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70, 1069–1081 (1996).

  11. 11

    Brezina, A., Orekhova, I. V. & Weiss, K. R. Control of time-dependent biological processes by temporally patterned input. Proc. Natl. Acad. Sci. USA 94, 10444–10449 (1997).

  12. 12

    Fields, R. D., Eshete, F., Stevens, B. & Itoh, K. Action potential-dependent regulation of gene expression: temporal specificity in Ca2+, cAMP-responsive element binding proteins, and mitogen-activated protein kinase signaling. J. Neurosci. 17, 7252–7266 (1997).

  13. 13

    Chatton, J.-Y, Cao, Y. & Stucki, J. W. Perturbation of myo-inositol-1,4,5-trisphosphate levels during agonist-induced Ca2+ oscillations. Biophys. J. 74, 523–531 (1998).

  14. 14

    Wang, X.-J Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol. 79, 1549–1566 (1998).

  15. 15

    Pivovarova, N. B., Hangpaisan, J., Andrews, S. B. & Friel, D. D. Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: spatial and temporal characteristics. J. Neurosci. 19, 6372–6384 (1999).

  16. 16

    Evans, P. D. & Siegler, M. V. S. Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle. J. Physiol. (Lond.) 324, 93–112 (1982).

  17. 17

    Weiss, K. R. et al. Peptidergic cotransmission in Aplysia: functional implications for rhythmic behaviors. Experientia 48, 456–463 (1992).

  18. 18

    Clarac, F. & Cattaert, D. Invertebrate presynaptic inhibition and motor control. Exp. Brain Res. 112, 163–180 (1996).

  19. 19

    Stevenson, P. A. & Meuser, S. Octopaminergic innervation and modulation of a locust flight steering muscle. J. Exp. Biol. 200, 633–642 (1997).

  20. 20

    Fields, D. R. & Nelson, P. G. Resonant activation of calcium signal transduction in neurons. J. Neurobiol. 25, 281–293 (1993).

  21. 21

    Sheng, H. Z., Fields, R. D. & Nelson, P.G. Specific regulation of immediate early genes by patterned neuronal activity. J. Neurosci. Res. 35, 459–467 (1993).

  22. 22

    Itoh, K., Stevens, B., Schachner, M. & Fields, R. D. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses. Science 270, 1369–1372 (1995).

  23. 23

    Li, W., Llopis, J., Whitney, M., Zlokarnik, G. & Tsien, R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392, 936–941 (1998).

  24. 24

    Dolmetsch, R. E., Xu, K. & Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936 (1998).

  25. 25

    Selverston, A. I., Russell, D. F., Miller, J. P. & King, D. G. The stomatogastric nervous system: Structure and function of a small neural network. Prog. Neurobiol. 7, 215–290 (1976).

  26. 26

    Govind, C. K., Atwood, H. L. & Maynard, D. M. Innervation and neuro-muscular physiology of intrinsic foregut muscles in the blue crab and spiny lobster. J. Comp. Physiol. A 96, 185–204 (1975).

  27. 27

    Maynard, D. M. & Selverston, A. I. Organization of the stomatogastric ganglion of the spiny lobster. IV. The pyloric system. J. Comp. Physiol. A 100, 161–182 (1975).

  28. 28

    Sigvardt, K. A. & Mulloney, B. Sensory alterations of motor patterns in the stomatogastric nervous system of the spiny lobster Panulirus interruptus. J. Exp. Biol. 97, 137–152 (1982).

  29. 29

    Kennedy, M. B. & Marder, E. in An Introduction to Molecular Neurobiology (ed. Hall, Z. H.) 463–495 (Sinauer, Sunderland, Massachusetts, 1992).

  30. 30

    Turrigiano, G. G. & Heinzel, H.-G in Dynamic Biological Networks. The Stomatogastric Nervous System (eds. Harris-Warrick, R. M., Marder, E., Selverston, A. I. & Moulins, M.) 197–220 (MIT Press, Cambridge, Massachusetts, 1992).

  31. 31

    Meyrand, P. & Moulins, M. Myogenic oscillatory activity in the pyloric rhythmic motor system of Crustacea. J. Comp. Physiol. A 158, 489–503 (1986).

  32. 32

    Meyrand, P. & Marder, E. Matching neural and muscle oscillators: control by FMRFamide-like peptides. J. Neurosci. 11, 1150–1161 (1991).

  33. 33

    Jorge-Rivera, J. C. & Marder, E. TNRNFLRFamide and SDRNFLRFamide modulate muscles of the stomatogastric system of the crab Cancer borealis. J. Comp. Physiol. A 179, 741–751 (1996).

  34. 34

    Morris, L. G. & Hooper, S. L. Muscle response to changing neuronal input in the lobster (Panulirus interruptus) stomatogastric system: Spike number vs. spike frequency dependent domains. J. Neurosci. 17, 5956–5971 (1997).

  35. 35

    Morris, L. G. & Hooper, S. L. Muscle response to changing neuronal input in the lobster (Panulirus interruptus) stomatogastric system: Slow muscle properties can transform rhythmic input into tonic output. J. Neurosci. 18, 3433–3442 (1998).

  36. 36

    Mulloney, B. Organization of the stomatogastric ganglion of the spiny lobster. V. Coordination of the gastric and pyloric systems. J. Comp. Physiol. A 122, 227–240 (1977).

  37. 37

    Russell, D. F. & Hartline, D. K. A multiaction synapse evoking both EPSPs and enhancement of endogenous bursting. Brain Res. 223, 19–38 (1981).

  38. 38

    Claiborne, B. J. & Selverston, A. I. Localization of stomatogastric IV neuron cell bodies in lobster brain. J. Comp. Physiol. A 154, 27–32 (1984).

  39. 39

    Maynard, D. M. & Dando, M. R. The structure of the stomatogastric neuromuscular system in Callinectes sapidus, Homarus americanus, and Panulirus argus (decapoda crustacea). Philos. Trans. R. Soc. Lond. B Biol. Sci. 268, 161–220 (1974).

  40. 40

    Beltz, B. et al. Serotonergic innervation and modulation of the stomatogastric ganglion of three decapod crustaceans (Panulirus interruptus, Homarus americanus, and Cancer irroratus). J. Exp. Biol. 109, 35–54 (1984).

  41. 41

    Flamm, R. E. & Harris-Warrick, R. M. Aminergic modulation in the lobster stomatogastric ganglion. I. Effects on the motor pattern and activity of neurons within the pyloric circuit. J. Neurophysiol. 55, 847–865 (1986).

  42. 42

    Hooper, S. L. & Marder, E. Modulation of the lobster pyloric rhythm by the peptide proctolin. J. Neurosci. 7, 2097–2112 (1987).

  43. 43

    Nusbaum, M. P. & Marder, E. A neuronal role for a crustacean red pigment concentrating hormone-like peptide: neuromodulation of the pyloric rhythm in the crab, Cancer borealis. J. Exp. Biol. 135, 165–181 (1988).

  44. 44

    Dickinson, P. S. & Nagy, F. Control of a central pattern generator by an identified modulatory interneurone in Crustacea. II. Induction and modification of plateau properties in pyloric neurones. J. Exp. Biol. 105, 59–82 (1983).

  45. 45

    Nusbaum, M. P. & Marder, E. A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity. J. Neurosci. 9, 1600–1607 (1989).

  46. 46

    Katz, P. S. & Harris-Warrick, R. M. Neuromodulation of the crab pyloric central pattern generator by serotonergic/cholinergic proprioceptive afferents. J. Neurosci. 10, 1495–1512 (1990).

  47. 47

    Norris, B. J., Coleman, M. J. & Nusbaum, M. P. Pyloric motor pattern modification by a newly identified projection neuron in the crab stomatogastric nervous system. J. Neurophysiol. 75, 97–108 (1996).

  48. 48

    Blitz, D. M. et al. Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network. J. Neurosci. 19, 5449–5463 (1999).

  49. 49

    Liu, Z., Golowasch, J., Marder, E. & Abbott, L. F. A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J. Neurosci. 18, 2309–2320 (1998).

  50. 50

    Turrigiano, G., Abbott, L. F. & Marder, E. Activity-dependent changes in the intrinsic electrical properties of cultured neurons. Science 264, 974–977 (1994).

Download references

Acknowledgements

This work was supported by Ohio University, NSF and NIMH. We thank R.A. DiCaprio for discussion and advice and A. L. Weaver for setting up the CED to stimulator interface and writing scripts to transform CED events into waveforms used to drive the stimulator.

Author information

Author notes

  1. Lee G. Morris and Jeff B. Thuma: The first two authors contributed equally to this work.

Affiliations

  1. Department of Physiology and Biophysics, Mt. Sinai Medical School, Box 1218, 1 Gustave L. Levy Place, New York, 10029, New York, USA

    • Lee G. Morris
  2. Department of Biological Sciences, Neuroscience Program, Irvine Hall, Ohio University, Athens, 45701, Ohio, USA

    • Jeff B. Thuma
    •  & Scott L. Hooper

Authors

  1. Search for Lee G. Morris in:

  2. Search for Jeff B. Thuma in:

  3. Search for Scott L. Hooper in:

Corresponding author

Correspondence to Scott L. Hooper.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/72955

Further reading