Article | Published:

Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo

Nature Neurosciencevolume 3pages231237 (2000) | Download Citation



We used time-lapse fluorescence microscopy to observe the growth of Mauthner cell axons and their postsynaptic targets, the primary motor neurons, in spinal cords of developing zebrafish embryos. Upon reaching successive motor neurons, the Mauthner growth cone paused briefly before continuing along its path. Varicosities formed at regular intervals and were preferentially associated with the target regions of the primary motor neurons. In addition, the postsynaptic motor neurons showed highly dynamic filopodia, which transiently interacted with both the growth cone and the axon. Both Mauthner cell and motor neurons were highly active, each showing motility sufficient to initiate synaptogenesis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Yasargil, G. M. & Diamond, J. Startle-response in teleost fish: an elementary circuit for neural discrimination. Nature 220, 241–243 ( 1968).

  2. 2

    Diamond, J. in Fish Physiology Vol. 5 (eds. Hoar, W. S. & Randall, D. J.) 265–346 (Academic, New York, 1971).

  3. 3

    Kimmel, C. B., Powell, S. L. & Metcalfe, W. K. Brain neurons which project to the spinal cord in young larvae of the zebrafish. J. Comp. Neurol. 205 , 112–127 (1982).

  4. 4

    Mendelson, B. Development of reticulospinal neurons of the zebrafish. I. Time of origin . J. Comp. Neurol. 251, 160– 171 (1986).

  5. 5

    Mendelson, B. Development of reticulospinal neurons of the zebrafish. II. Early axonal outgrowth and cell body position. J. Comp. Neurol. 251, 172–184 (1986).

  6. 6

    Metcalfe, W. K., Mendelson, B. & Kimmel, C. B. Segmental homologies among reticulospinal neurons in the hindbrain of zebrafish larva. J. Comp. Neurol. 251, 147–159 (1986).

  7. 7

    Fetcho, J. R. & Faber, D. S. Identification of motoneurons and interneurons in the spinal network for escapes initiated by the Mauthner cell in goldfish. J. Neurosci. 8, 4192– 4213 (1988).

  8. 8

    Myers, P. Z. Spinal motoneurons of the larval zebrafish. J. Comp. Neurol. 236, 555–561 (1985).

  9. 9

    Myers, P. Z., Westerfield, M. & Eisen, J. S. Development and axonal outgrowth of identified motoneurons in the zebrafish. J. Neurosci. 6, 2278– 2289 (1986).

  10. 10

    Westerfield, M., McMurray, J. V. & Eisen, J. S. Identified motoneurons and their innervation of axial muscles in the zebrafish. J. Neurosci. 6, 2267–2277 (1986).

  11. 11

    Eisen, J. S., Myers, P. Z. & Westerfield, M. Pathway selection by growth cones of identified motoneurones in live zebra fish embryos. Nature 320, 269–271 (1986).

  12. 12

    Liu, D. W. & Westerfield, M. Function of identified motoneurones and co-ordination of primary and secondary motor systems during zebra fish swimming. J. Physiol. (Lond.) 403, 73– 89 (1988).

  13. 13

    Celio, M. R., Gray, E. G. & Yasargil, G. M. Ultrastructure of the Mauthner axon collateral and its synapses in the goldfish spinal cord. J. Neurocytol. 8, 19–29 (1979).

  14. 14

    Yasargil, G. M. & Sandri, C. Topography and ultrastructure of commisural interneurons that may establish reciprocal inhibitory connections of the Mauthner axons in the spinal cord of the tench, Tinca tinca L. J. Neurocytol. 19, 111– 126 (1990).

  15. 15

    Harris, W. A., Holt, C. E. & Bonhoeffer, F. Retinal axons with and without their somata, growing to and arborizing in the tectum of Xenopus embryos: a time-lapse video study of single fibres in vivo. Development 101, 123–133 (1987).

  16. 16

    O'Rourke, N. A. & Fraser, S. E. Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study. Neuron 5, 159–171 (1990).

  17. 17

    O'Rourke, N. A., Cline, H. T. & Fraser, S. E. Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission. Neuron 12, 921–934 (1994).

  18. 18

    Witte, S., Stier, H. & Cline, H. T. In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors. J. Neurobiol. 31, 219–234 (1996).

  19. 19

    Wu, G. Y. & Cline, H. T. Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279, 222–226 (1998).

  20. 20

    Kaethner, R. J. & Stuermer, C. A. Dynamics of terminal arbor formation and target approach of retinotectal axons in living zebrafish embryos: a time-lapse study of single axons. J. Neurosci. 12, 3257–3271 ( 1992).

  21. 21

    Dynes, J. L. & Ngai, J. Pathfinding of olfactory neuron axons to stereotyped glomerular targets revealed by dynamic imaging in living zebrafish embryos. Neuron 20, 1081– 1091 (1998).

  22. 22

    Shoji, W., Yee, C. S. & Kuwada, J. Y. Zebrafish semaphorin Z1a collapses specific growth cones and alters their pathway in vivo. Development 125, 1275–1283 (1998).

  23. 23

    Dailey, M. E. & Smith, S. J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996).

  24. 24

    Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

  25. 25

    Saito, Y. et al. Developing corticorubral axons of the cat form synapses on filopodial dendritic protrusions. Neurosci. Lett. 147, 81–84 (1992).

  26. 26

    Fiala, J. C., Feinberg, M., Popov, V. & Harris, K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

  27. 27

    Saito, Y., Song, W.-J & Murakami, F. Preferential termination of corticorubral axons on spine-like dendritic protrusions in developing cat. J. Neurosci. 17, 8792–8803 (1997).

  28. 28

    Honig, M. G. & Hume, R. I. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J. Cell Biol. 103, 171–187 (1986).

  29. 29

    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253– 310 (1995).

  30. 30

    Luo, Y., Raible, D. & Raper, J. A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75, 217–227 (1993).

  31. 31

    Kolodkin, A. L. et al. Fasciclin IV: sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron 9, 831–845 (1992).

  32. 32

    Saint-Amant, L. & Drapeau, P. Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol. 37, 622–632 ( 1998).

  33. 33

    Westerfield, M. The Zebrafish Book (Univ. of Oregon Press, 1995).

  34. 34

    Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

Download references


Susan Pike conducted initial work on this project. We thank S. Pike and faculty members of the MBL Neural Development and Genetics of the Zebrafish course (Woods Hole, Massachusetts) for help and advice. J.D.J. is a fellow of the Helen Hay Whitney Foundation. This work was supported by NIH grants to S.J.S.

Author information


  1. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, 94305-5435, California, USA

    • James D. Jontes
    • , JoAnn Buchanan
    •  & Stephen J. Smith


  1. Search for James D. Jontes in:

  2. Search for JoAnn Buchanan in:

  3. Search for Stephen J. Smith in:

Corresponding author

Correspondence to Stephen J. Smith.

Supplementary information

About this article

Publication history



Issue Date


Further reading