Article | Published:

Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons

Nature Neurosciencevolume 3pages226230 (2000) | Download Citation

Subjects

Abstract

Despite the importance of dopamine signaling, it remains unknown if the two major subclasses of dopamine receptors exist on the same or distinct populations of neurons. Here we used confocal microscopy to demonstrate that virtually all striatal neurons, both in vitro and in vivo, contained dopamine receptors of both classes. We also provide functional evidence for such colocalization: in essentially all neurons examined, fenoldopam, an agonist of the D1 subclass of receptors, inhibited both the Na+/K+ pump and tetrodotoxin (TTX)-sensitive sodium channels, and quinpirole, an agonist of the D2 subclass of receptors, activated TTX-sensitive sodium channels. Thus D1 and D2 classes of ligands may functionally interact in virtually all dopamine-responsive neurons within the basal ganglia.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Missale, C., Nash, S. R., Robinson, S. W., Jaber, M. & Caron, M. G. Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225 (1998).

  2. 2

    Chase, T. N., Oh, J. D. & Blanchet, P. J. Neostriatal mechanisms in Parkinson's disease. Neurology 51, S30–35 (1998).

  3. 3

    Grace, A. A., Gerfen, C. R. & Aston-Jones G. Catecholamines in central neurvous system. Overview. Adv. Pharmacol. 42,655–670 (1998).

  4. 4

    Knable, M. B. & Weinberger, D. R. Dopamine, the prefrontal cortex and schizophrenia. J. Psychopharmacol. 11, 123–131 (1997).

  5. 5

    Egan, M. F. & Weinberger, D. R. Neurobiology of schizophrenia. Curr. Opin. Neurobiol. 7, 701–707 (1997).

  6. 6

    Castellanos, F. X. Toward a pathophysiology of attention-deficit/hyperactivity disorder. Clin. Pediatr. (Phila.) 36, 381–393 (1997).

  7. 7

    Swanson, J., Castellanos, F. X., Murias, M., LaHoste, G. & Kennedy J. Cognitive neuroscience of attention deficit hyperactivity disorder and hyperkinetic disorder. Curr. Opin. Neurobiol. 8, 263–271 (1998).

  8. 8

    Self, D. W., Barnhart, W. J., Lehman, D. A. & Nestler, E. J. Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists. Science 27, 1586–1589 (1996).

  9. 9

    Koob, G. F. & Le Moal, M. Drug abuse: hedonic homeostatic dysregulation. Science 278, 52–58 (1997).

  10. 10

    Gerfen, C. R. & Keefe, K. A. Neostriatal dopamine receptors. Trends Neurosci. 17, 2–3 (1994).

  11. 11

    Bloch, B. & Le Moine, C. Neostriatal dopamine receptors. Trends Neurosci. 17, 3–4 (1994).

  12. 12

    Surmeier, D. J., Reiner, A., Levine, M. S. & Ariano, M. A. Neostriatal dopamine receptors. Trends Neurosci. 17, 4–5 (1994).

  13. 13

    Surmeier, D. J., Reiner, A., Levine, M. S. & Ariano, M. A. Are neostriatal dopamine receptors co-localized? Trends Neurosci. 16, 299–305 (1993).

  14. 14

    Gerfen, C. R. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 15, 133–139 (1992).

  15. 15

    Le Moine, C. & Bloch, B. D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J. Comp. Neurol. 355, 418–426 (1995).

  16. 16

    Gerfen, C. R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).

  17. 17

    Yung, K. K. et al. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65, 709–730 (1995).

  18. 18

    Surmeier, D. J. et al. Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc. Natl. Acad. Sci. USA 89, 10178–10182 (1992).

  19. 19

    Ouimet, C. C. & Greengard, P. Distribution of DARPP-32 in the basal ganglia: an electron microscopic study. J. Neurocytol. 19, 39–52 (1990).

  20. 20

    Anderson, K. D. & Reiner, A. Immunohistochemical localization of DARPP-32 in striatal projection neurons and striatal interneurons: implications for the localization of D1-like dopamine receptors on different types of striatal neurons. Brain Res. 568, 235–243 (1991).

  21. 21

    Borin, M. L. Dual inhibitory effects of dopamine on Na+ homeostasis in rat aorta smooth muscle cells. Am. J. Physiol. 272, C428–438 (1997).

  22. 22

    Cepeda, C., Buchwald, N. A. & Levine, M. S. Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc. Natl. Acad. Sci. USA 90, 9576–9580 (1993).

  23. 23

    Levey, A. I. et al. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc. Natl. Acad. Sci. USA 90, 8861–8865 (1993).

  24. 24

    Le Moine, C., Normand, E. & Bloch, B. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc. Natl. Acad. Sci. USA 88, 4205–4209 (1991).

  25. 25

    Surmeier, D. J., Song, W. J. & Yan, Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579–6591 (1996).

  26. 26

    Belusa, R. et al. Mutation of the protein kinase C phosphorylation site on rat alpha1 Na+,K+-ATPase alters regulation of intracellular Na+ and pH and influences cell shape and adhesiveness. J. Biol. Chem. 272, 20179–20184 (1997).

  27. 27

    Borin, M. L., Goldman, W. F. & Blaustein, M. P. Intracellular free Na+ in resting and activated A7r5 vascular smooth muscle cells. Am. J. Physiol. 264, C1513–1524 (1993).

  28. 28

    Satoh, H. et al. Regulation of [Na+]i and [Ca2+]i in guinea pig myocytes: dual loading of fluorescent indicators SBFI and fluo 3. Am. J. Physiol. 266, H568–576 (1994).

  29. 29

    Peng, L., Martin-Vasallo, P. & Sweadner, K. J. Isoforms of Na,K-ATPase alpha and beta subunits in the rat cerebellum and in granule cell cultures. J. Neurosci. 17, 3488–3502 (1997).

  30. 30

    Pietrini, G., Matteoli, M., Banker, G. & Caplan M. J. Isoforms of the Na,K-ATPase are present in both axons and dendrites of hippocampal neurons in culture. Proc. Natl. Acad. Sci. USA 89, 8414–8418 (1992).

  31. 31

    Jewell, E. A. & Lingrel, J. Comparison of the substrate dependence properties of the rat Na,K-ATPase alpha1, alpha 2 and alpha 3 isoforms expressed in HeLa cells. J. Biol. Chem. 266, 16925–16930 (1991).

  32. 32

    Zahler, R., Zhang, Z.-T, Manor, M. & Boron, W. F. Sodium kinetics of Na,K-ATPase α isoforms in intact transfected HeLa cells. J. Gen. Physiol. 110, 201–213 (1997).

  33. 33

    Johnson, S. W., Seutin, V. & North, R. A. Burst firing in dopamine neurons induced by N-methyl-d-aspartate: role of electrogenic sodium pump. Science 258, 665–667 (1992).

  34. 34

    Yu, X. M. & Salter, M. W. Gain control of NMDA-receptor currents by intracellular sodium. Nature 396, 469–474 (1998).

  35. 35

    Bockaert, J. et al. Primary culture of striatal neurons: a model of choice for pharmacological and biochemical studies of neurotransmitter receptors. J. Physiol. (Paris) 81, 219–227 (1986).

  36. 36

    O'Connell, D. P. et al. Localization of dopamine D1A receptor protein in rat kidneys. Am. J. Physiol. 268, F1185–1197 (1995).

  37. 37

    Hemmings, H. C. Jr. & Greengard, P. DARPP-32, a dopamine- and adenosine 3 ′ :5 ′ -monophosphate-regulated phosphoprotein: regional, tissue, and phylogenetic distribution. J. Neurosci. 6, 1469–1481 (1986).

Download references

Acknowledgements

We thank Ann-Christine Eklöf for experimental assistance. This work was supported by grants from the Swedish Medical Research Council (H.B. and A.A.), Märta and Gunnar V. Philipsons Foundation (H.B.), NIH grants MH40899 and DA 10044 (P.G.) and a grant from Stiftelsen Frimurare Barnhuset I Stockholm (O.A.).

Author information

Author notes

  1. Oleg Aizman and Hjalmar Brismar: O.A. and H.B. contributed equally to this work.

Affiliations

  1. Department of Woman and Child Health, Karolinska Institutet Astrid Lindgren Children's Hospital, Q2:09, Stockholm, 171 76, Sweden

    • Oleg Aizman
    • , Hjalmar Brismar
    • , Per Uhlén
    • , Eivor Zettergren
    • , Hans Forssberg
    •  & Anita Aperia
  2. Department of Neurology, Emory University School of Medicine Atlanta, Georgia, 30322, Georgia, USA

    • Allan I. Levey
  3. Laboratory of Molecular Cellular Neuroscience The Rockefeller University, NewYork, 10021-6399, NewYork, USA

    • Paul Greengard

Authors

  1. Search for Oleg Aizman in:

  2. Search for Hjalmar Brismar in:

  3. Search for Per Uhlén in:

  4. Search for Eivor Zettergren in:

  5. Search for Allan I. Levey in:

  6. Search for Hans Forssberg in:

  7. Search for Paul Greengard in:

  8. Search for Anita Aperia in:

Corresponding author

Correspondence to Anita Aperia.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/72929

Further reading