Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons

Abstract

Despite the importance of dopamine signaling, it remains unknown if the two major subclasses of dopamine receptors exist on the same or distinct populations of neurons. Here we used confocal microscopy to demonstrate that virtually all striatal neurons, both in vitro and in vivo, contained dopamine receptors of both classes. We also provide functional evidence for such colocalization: in essentially all neurons examined, fenoldopam, an agonist of the D1 subclass of receptors, inhibited both the Na+/K+ pump and tetrodotoxin (TTX)-sensitive sodium channels, and quinpirole, an agonist of the D2 subclass of receptors, activated TTX-sensitive sodium channels. Thus D1 and D2 classes of ligands may functionally interact in virtually all dopamine-responsive neurons within the basal ganglia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary culture of medium spiny neurons from rat embryonic striatum stained for neuronal markers and for D1 and D2 receptors.
Figure 2: D1 and D2 subclasses of receptors colocalize with DARPP-32 in primary cultures and slices of rat neostriatal neurons.
Figure 3: D1-subclass receptors colocalize with D2-subclass receptors in neurons of rat neostriatal slices.
Figure 4: Effects of D1 and D2 agonists and antagonists on initial rates of Na+ influx and efflux in primary cultures of striatal cells.
Figure 5: Effects of D1 and D2 agonists on [Na+]i in primary cultures of rat striatal cells.

Similar content being viewed by others

References

  1. Missale, C., Nash, S. R., Robinson, S. W., Jaber, M. & Caron, M. G. Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225 (1998).

    Article  CAS  Google Scholar 

  2. Chase, T. N., Oh, J. D. & Blanchet, P. J. Neostriatal mechanisms in Parkinson's disease. Neurology 51, S30–35 (1998).

    Article  CAS  Google Scholar 

  3. Grace, A. A., Gerfen, C. R. & Aston-Jones G. Catecholamines in central neurvous system. Overview. Adv. Pharmacol. 42,655–670 (1998).

    Article  CAS  Google Scholar 

  4. Knable, M. B. & Weinberger, D. R. Dopamine, the prefrontal cortex and schizophrenia. J. Psychopharmacol. 11, 123–131 (1997).

    Article  CAS  Google Scholar 

  5. Egan, M. F. & Weinberger, D. R. Neurobiology of schizophrenia. Curr. Opin. Neurobiol. 7, 701–707 (1997).

    Article  CAS  Google Scholar 

  6. Castellanos, F. X. Toward a pathophysiology of attention-deficit/hyperactivity disorder. Clin. Pediatr. (Phila.) 36, 381–393 (1997).

    Article  CAS  Google Scholar 

  7. Swanson, J., Castellanos, F. X., Murias, M., LaHoste, G. & Kennedy J. Cognitive neuroscience of attention deficit hyperactivity disorder and hyperkinetic disorder. Curr. Opin. Neurobiol. 8, 263–271 (1998).

    Article  CAS  Google Scholar 

  8. Self, D. W., Barnhart, W. J., Lehman, D. A. & Nestler, E. J. Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists. Science 27, 1586–1589 (1996).

    Article  Google Scholar 

  9. Koob, G. F. & Le Moal, M. Drug abuse: hedonic homeostatic dysregulation. Science 278, 52–58 (1997).

    Article  CAS  Google Scholar 

  10. Gerfen, C. R. & Keefe, K. A. Neostriatal dopamine receptors. Trends Neurosci. 17, 2–3 (1994).

    Article  CAS  Google Scholar 

  11. Bloch, B. & Le Moine, C. Neostriatal dopamine receptors. Trends Neurosci. 17, 3–4 (1994).

    Article  CAS  Google Scholar 

  12. Surmeier, D. J., Reiner, A., Levine, M. S. & Ariano, M. A. Neostriatal dopamine receptors. Trends Neurosci. 17, 4–5 (1994).

    Article  Google Scholar 

  13. Surmeier, D. J., Reiner, A., Levine, M. S. & Ariano, M. A. Are neostriatal dopamine receptors co-localized? Trends Neurosci. 16, 299–305 (1993).

    Article  CAS  Google Scholar 

  14. Gerfen, C. R. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 15, 133–139 (1992).

    Article  CAS  Google Scholar 

  15. Le Moine, C. & Bloch, B. D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J. Comp. Neurol. 355, 418–426 (1995).

    Article  CAS  Google Scholar 

  16. Gerfen, C. R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).

    Article  CAS  Google Scholar 

  17. Yung, K. K. et al. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65, 709–730 (1995).

    Article  CAS  Google Scholar 

  18. Surmeier, D. J. et al. Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc. Natl. Acad. Sci. USA 89, 10178–10182 (1992).

    Article  CAS  Google Scholar 

  19. Ouimet, C. C. & Greengard, P. Distribution of DARPP-32 in the basal ganglia: an electron microscopic study. J. Neurocytol. 19, 39–52 (1990).

    Article  CAS  Google Scholar 

  20. Anderson, K. D. & Reiner, A. Immunohistochemical localization of DARPP-32 in striatal projection neurons and striatal interneurons: implications for the localization of D1-like dopamine receptors on different types of striatal neurons. Brain Res. 568, 235–243 (1991).

    Article  CAS  Google Scholar 

  21. Borin, M. L. Dual inhibitory effects of dopamine on Na+ homeostasis in rat aorta smooth muscle cells. Am. J. Physiol. 272, C428–438 (1997).

    Article  CAS  Google Scholar 

  22. Cepeda, C., Buchwald, N. A. & Levine, M. S. Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc. Natl. Acad. Sci. USA 90, 9576–9580 (1993).

    Article  CAS  Google Scholar 

  23. Levey, A. I. et al. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc. Natl. Acad. Sci. USA 90, 8861–8865 (1993).

    Article  CAS  Google Scholar 

  24. Le Moine, C., Normand, E. & Bloch, B. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc. Natl. Acad. Sci. USA 88, 4205–4209 (1991).

    Article  CAS  Google Scholar 

  25. Surmeier, D. J., Song, W. J. & Yan, Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579–6591 (1996).

    Article  CAS  Google Scholar 

  26. Belusa, R. et al. Mutation of the protein kinase C phosphorylation site on rat alpha1 Na+,K+-ATPase alters regulation of intracellular Na+ and pH and influences cell shape and adhesiveness. J. Biol. Chem. 272, 20179–20184 (1997).

    Article  CAS  Google Scholar 

  27. Borin, M. L., Goldman, W. F. & Blaustein, M. P. Intracellular free Na+ in resting and activated A7r5 vascular smooth muscle cells. Am. J. Physiol. 264, C1513–1524 (1993).

    Article  Google Scholar 

  28. Satoh, H. et al. Regulation of [Na+]i and [Ca2+]i in guinea pig myocytes: dual loading of fluorescent indicators SBFI and fluo 3. Am. J. Physiol. 266, H568–576 (1994).

    CAS  PubMed  Google Scholar 

  29. Peng, L., Martin-Vasallo, P. & Sweadner, K. J. Isoforms of Na,K-ATPase alpha and beta subunits in the rat cerebellum and in granule cell cultures. J. Neurosci. 17, 3488–3502 (1997).

    Article  CAS  Google Scholar 

  30. Pietrini, G., Matteoli, M., Banker, G. & Caplan M. J. Isoforms of the Na,K-ATPase are present in both axons and dendrites of hippocampal neurons in culture. Proc. Natl. Acad. Sci. USA 89, 8414–8418 (1992).

    Article  CAS  Google Scholar 

  31. Jewell, E. A. & Lingrel, J. Comparison of the substrate dependence properties of the rat Na,K-ATPase alpha1, alpha 2 and alpha 3 isoforms expressed in HeLa cells. J. Biol. Chem. 266, 16925–16930 (1991).

    CAS  PubMed  Google Scholar 

  32. Zahler, R., Zhang, Z.-T, Manor, M. & Boron, W. F. Sodium kinetics of Na,K-ATPase α isoforms in intact transfected HeLa cells. J. Gen. Physiol. 110, 201–213 (1997).

    Article  CAS  Google Scholar 

  33. Johnson, S. W., Seutin, V. & North, R. A. Burst firing in dopamine neurons induced by N-methyl-d-aspartate: role of electrogenic sodium pump. Science 258, 665–667 (1992).

    Article  CAS  Google Scholar 

  34. Yu, X. M. & Salter, M. W. Gain control of NMDA-receptor currents by intracellular sodium. Nature 396, 469–474 (1998).

    Article  CAS  Google Scholar 

  35. Bockaert, J. et al. Primary culture of striatal neurons: a model of choice for pharmacological and biochemical studies of neurotransmitter receptors. J. Physiol. (Paris) 81, 219–227 (1986).

    CAS  Google Scholar 

  36. O'Connell, D. P. et al. Localization of dopamine D1A receptor protein in rat kidneys. Am. J. Physiol. 268, F1185–1197 (1995).

    CAS  PubMed  Google Scholar 

  37. Hemmings, H. C. Jr. & Greengard, P. DARPP-32, a dopamine- and adenosine 3 ′ :5 ′ -monophosphate-regulated phosphoprotein: regional, tissue, and phylogenetic distribution. J. Neurosci. 6, 1469–1481 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ann-Christine Eklöf for experimental assistance. This work was supported by grants from the Swedish Medical Research Council (H.B. and A.A.), Märta and Gunnar V. Philipsons Foundation (H.B.), NIH grants MH40899 and DA 10044 (P.G.) and a grant from Stiftelsen Frimurare Barnhuset I Stockholm (O.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Aperia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizman, O., Brismar, H., Uhlén, P. et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 3, 226–230 (2000). https://doi.org/10.1038/72929

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing