Article | Published:

Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo

Nature Neurosciencevolume 3pages217225 (2000) | Download Citation



The development and structural plasticity of dendritic arbors are governed by several factors, including synaptic activity, neurotrophins and other growth-regulating molecules. The signal transduction pathways leading to dendritic structural changes are unknown, but likely include cytoskeleton regulatory components. To test whether GTPases regulate dendritic arbor development, we collected time-lapse images of single optic tectal neurons in albino Xenopus tadpoles expressing dominant negative or constitutively active forms of Rac, Cdc42 or RhoA. Analysis of images collected at two-hour intervals over eight hours indicated that enhanced Rac activity selectively increased branch additions and retractions, as did Cdc42 to a lesser extent. Activation of endogenous RhoA decreased branch extension without affecting branch additions and retractions, whereas dominant-negative RhoA increased branch extension. Finally, we provide data suggesting that RhoA mediates the promotion of normal dendritic arbor development by NMDA receptor activation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Stuart, G., Spruston, N. & Hausser, M. Dendrites (Oxford Univ. Press, Oxford, 1999).

  2. 2

    Koester, S. E. & O'Leary, D. D. Development of projection neurons of the mammalian cerebral cortex. Prog. Brain Res. 102, 207–215 (1994).

  3. 3

    Wu, G.-Y & Cline, H. T. Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279, 222–226 (1998).

  4. 4

    Wu, G.-Y, Zou, D. J., Rajan, I. & Cline, H. T. Dendritic dynamics in vivo change during neuronal maturation. J. Neurosci. 19, 4472–4483 (1999).

  5. 5

    Rajan, I. & Cline, H. T. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836–7846 (1998).

  6. 6

    Rajan, I., Witte, S. & Cline, H. T. NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo. J. Neurobiol. 38, 2089–2096 (1999).

  7. 7

    Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

  8. 8

    Narumiya, S. The small GTPase Rho: cellular functions and signal transduction. J. Biochem. (Tokyo) 120, 215–228 (1996).

  9. 9

    Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295– 2322 (1997).

  10. 10

    Van Leeuwen, F. N. et al. The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J. Cell Biol. 139, 797–807 (1997).

  11. 11

    Gebbink, M. F. et al. Identification of a novel, putative Rho-specific GDP/GTP exchange factor and a RhoA-binding protein: control of neuronal morphology. J. Cell Biol. 137, 1603–1613 (1997).

  12. 12

    Threadgill, R., Bobb, K. & Ghosh, A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19, 625–634 ( 1997).

  13. 13

    Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1132– 1138 (1996).

  14. 14

    Yamashita, T., Tucker, K. L. & Barde, Y.-A Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24, 585–605 (1999).

  15. 15

    Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

  16. 16

    Luo, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996).

  17. 17

    Kaufmann, N., Wills, Z. P. & Van Vactor, D. Drosophila Rac1 controls motor axon guidance. Development 125, 453–461 (1998).

  18. 18

    Ruchhoeft, M. L. et al. The neuronal archicture of Xenopus retinal ganglion cells is sculpted by Rho-family GTPases in vivo. J. Neurosci. 19, 8454–8463 (1999).

  19. 19

    Zipkin, I. D., Kindt, R. M. & Kenyon, C. J. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 90, 883–894 (1997).

  20. 20

    Lee, T. et al. Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron (in press).

  21. 21

    Wu, G.-Y, Zou, D.-J, Koothan, T. & Cline, H. T. Infection of frog neurons with vaccinia virus permits in vivo expression of foreign proteins . Neuron 14, 681–684 (1995).

  22. 22

    Jalink, K. et al. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126, 801– 810 (1994).

  23. 23

    O'Rourke, N. A., Cline, H. T. & Fraser, S. E. Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission. Neuron 12, 921–934 (1994).

  24. 24

    Witte, S., Stier, H. & Cline, H. T. In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors. J. Neurobiol. 31, 219–234 (1996).

  25. 25

    Wu, G.-Y, Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 ( 1996).

  26. 26

    Purpura, D. P. Dendritic differentiation in human cerebral cortex: normal and aberrant developmental patterns. Adv. Neurol. 12, 91– 134 (1975).

  27. 27

    Billuart, P. et al. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature 392, 923– 926 (1998).

  28. 28

    Chen, H. J., Rojas, S. M., Oguni, A. & Kennedy, M. B. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20, 895–904 ( 1998).

  29. 29

    Kim, J. H., Liao, D., Lau, L.-F & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691 ( 1998).

  30. 30

    Ridley, A. J. et al. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401– 410 (1992).

  31. 31

    Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

  32. 32

    Miskevich, F., Zhu, Y., Ranscht, B. & Sanes, J. R. Expression of multiple cadherins and catenins in the chick optic tectum. Mol. Cell Neurosci. 4, 240–255 (1998).

  33. 33

    McAllister, A. K., Lo, D. C. & Katz, L. C. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15, 791– 803 (1995).

  34. 34

    Kuhn, T. B. et al. Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of rac1. J. Neurosci. 19, 1965– 1975 (1999).

  35. 35

    Jin, Z. & Strittmatter, S. M. Rac1 mediates collapsin-1-induced growth cone collapse. J. Neurosci. 17, 6256 –6263 (1997).

  36. 36

    Kuhn, T. B., Brown, M. D. & Bamburg, J. R. Rac1-dependent actin filament organization in growth cones is necessary for beta1-integrin-mediated advance but not for growth on poly-D-lysine. J. Neurobiol. 37, 524– 540 (1998).

  37. 37

    Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodeling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell Biol. 17, 1201–1211 (1997).

  38. 38

    Fiala, J. C., Feinberg, M., Popov, V. & Harris, K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

  39. 39

    Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

  40. 40

    Bentley, D. & O'Connor, T. P. Cytoskeletal events in growth cone steering. Curr. Opin. Neurobiol. 4, 43–48 (1994).

  41. 41

    Hirose, M. et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J. Cell Biol. 141, 1625–1636 (1998).

  42. 42

    Fannon, A. M. & Colman, D. R. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17, 423– 434 (1996).

  43. 43

    Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999).

  44. 44

    Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805– 809 (1998).

  45. 45

    Yang, N. et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809– 812 (1998).

  46. 46

    Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP . Nature 391, 93–96 (1998).

  47. 47

    Obermeier, A. et al. PAK promotes morphological changes by acting upstream of Rac . EMBO J. 17, 4328–4339 (1998).

  48. 48

    Mackett, M., Smith, G. L. & Moss, B. DNA Cloning: A Practical Approach (IRL Press, Oxford, 1985).

  49. 49

    Cline, H. T. et al. in Imaging: A Laboratory Manual (eds. Yuste, R., Lanni, F. & Konnerth, A.) 13.1–13.12 (Cold Spring Harbor Laboratory Press, 1999).

Download references


We thank Wun Chey Sin for providing the EGFP-Cdc42N17 and EGFP-RhoN19 viruses, Kim Bronson for technical assistance and Neil Mahapatra for help with the Sholl analysis. Support for the work was provided by the NIH (H.T.C., L.V.A.) and the Eppley Foundation (H.T.C.).

Author information


  1. Cold Spring Harbor Laboratory, Beckman Bldg., 1 Bungtown Rd., Cold Spring Harbor, 11724, New York, USA

    • Zheng Li
    • , Linda Van Aelst
    •  & Hollis T. Cline
  2. Department of Neurobiology and Behavior, SUNY Stony Brook, New York, 11794, USA

    • Zheng Li
    •  & Hollis T. Cline


  1. Search for Zheng Li in:

  2. Search for Linda Van Aelst in:

  3. Search for Hollis T. Cline in:

Corresponding author

Correspondence to Hollis T. Cline.

Supplementary information

About this article

Publication history



Issue Date


Further reading