Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optic flow is used to control human walking


How is human locomotion visually controlled? Fifty years ago, it was proposed that we steer to a goal using optic flow, the pattern of motion at the eye that specifies the direction of locomotion. However, we might also simply walk in the perceived direction of a goal. These two hypotheses normally predict the same behavior, but we tested them in an immersive virtual environment by displacing the optic flow from the direction of walking, violating the laws of optics. We found that people walked in the visual direction of a lone target, but increasingly relied on optic flow as it was added to the display. The visual control law for steering toward a goal is a linear combination of these two variables weighted by the magnitude of flow, thereby allowing humans to have robust locomotor control under varying environmental conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Manipulating optic flow in a virtual environment.
Figure 2: Predictions of the two hypotheses, in a physical world coordinate frame.
Figure 3: The four virtual worlds, and results of experiment 1.
Figure 4: Mean paths and virtual heading errors in experiment 2.
Figure 5: Visual control law for steering to a goal.


  1. 1

    Gibson, J. J. Perception of the Visual World (Houghton Mifflin, Boston, 1950).

    Google Scholar 

  2. 2

    Warren, W. H. in High-Level Motion Processing (ed. Watanabe, T.) 315–358 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  3. 3

    Warren, W. H., Morris, M. W. & Kalish, M. Perception of translational heading from optical flow. J. Exp. Psychol. Hum. Percept. Perform. 14, 646–660 (1988).

    Article  Google Scholar 

  4. 4

    van den Berg, A. V. Robustness of perception of heading from optic flow. Vision Res. 32, 1285–1296 (1992).

    CAS  Article  Google Scholar 

  5. 5

    Crowell, J. A. & Banks, M. S. Ideal observer for heading judgments. Vision Res. 36, 471–490 (1996).

    CAS  Article  Google Scholar 

  6. 6

    Warren, W. H. & Hannon, D. J. Direction of self-motion is perceived from optical flow. Nature 336, 162–163 (1988).

    Article  Google Scholar 

  7. 7

    Royden, C. S., Banks, M. S. & Crowell, J. A. The perception of heading during eye movements. Nature 360, 583–585 (1992).

    CAS  Article  Google Scholar 

  8. 8

    Royden, C. S., Crowell, J. A. & Banks, M. S. Estimating heading during eye movements. Vision Res. 34, 3197–3214 (1994).

    CAS  Article  Google Scholar 

  9. 9

    Li, L. & Warren, W. H. Perception of heading during rotation: sufficiency of dense motion parallax and reference objects. Vision Res. 40, 3873–3894 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Saito, H. et al. Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J. Neurosci. 6, 145–157 (1986).

    CAS  Article  Google Scholar 

  11. 11

    Orban, G. A. et al. First-order analysis of optical flow in monkey brain. Proc. Natl. Acad. Sci. USA 89, 2595–2599 (1992).

    CAS  Article  Google Scholar 

  12. 12

    Graziano, M. S. A., Andersen, R. A. & Snowden, R. J. Tuning of MST neurons to spiral motions. J. Neurosci. 14, 54–67 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Duffy, C. J. & Wurtz, R. H. Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci. 15, 5192–5208 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Siegel, R. M. & Read, H. L. Analysis of optic flow in the monkey parietal area 7a. Cereb. Cortex 7, 327–346 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Anderson, K. C. & Siegel, R. M. Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. J. Neurosci. 19, 2681–2692 (1999).

    CAS  Article  Google Scholar 

  16. 16

    DeJongh, B. M., Shipp, S., Skidmore, B., Frackowiak, R. S. J. & Zeki, S. The cerebral activity related to the visual perception of forward motion in depth. Brain 117, 1039–1054 (1994).

    Article  Google Scholar 

  17. 17

    Vaina, L. Complex motion perception and its deficits. Curr. Opin. Neurobiol. 8, 494–502 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Nakayama, K. James Gibson—an appreciation. Psychol. Rev. 101, 329–335 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Rushton, S. K., Harris, J. M., Lloyd, M. & Wann, J. P. Guidance of locomotion on foot uses perceived target location rather than optic flow. Curr. Biol. 8, 1191–1194 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Harris, J. M. & Rogers, B. J. Going against the flow. Trends Cogn. Sci. 3, 449–450 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Wann, J. & Land, M. Steering with or without the flow: is the retrieval of heading necessary? Trends Cogn. Sci. 4, 319–324 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Collett, T. S. & Land, M. F. Visual control of flight behavior in the hoverfly, Syritta pipiens. J. Comp. Physiol. 99, 1–66 (1975).

    Article  Google Scholar 

  23. 23

    Wood, R. M., Harvey, M. A., Young, C. E., Beedie, A. & Wilson, T. Weighting to go with the flow? Curr. Biol. 10, R545–R546 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Bridgeman, B., Kirch, M. & Sperling, A. Segregation of cognitive and motor aspects of visual function using induced motion. Percept. Psychophys. 29, 336–342 (1981).

    Article  Google Scholar 

  25. 25

    Heckmann, T. & Howard, I. P. Induced motion: isolation and dissociation of egocentric and vection-entrained components. Perception 20, 285–305 (1991).

    CAS  Article  Google Scholar 

  26. 26

    Smeets, J. B. J. & Brenner, E. Perception and action are based on the same visual information: distinction between position and velocity. J. Exp. Psychol. Hum. Percept. Perform. 21, 19–31 (1995).

    CAS  Article  Google Scholar 

  27. 27

    Schöner, G., Dose, M. & Engels, C. Dynamics of behavior: theory and applications for autonomous robot architectures. Robot Auton. Syst. 16, 213–245 (1995).

    Article  Google Scholar 

  28. 28

    Warren, W. H. Visually controlled locomotion: 40 years later. Eco. Psychol. 10, 177–219 (1998).

    Article  Google Scholar 

  29. 29

    Fajen, B. & Warren, W. H. Go with the flow. Trends Cogn. Sci. 4, 368–369 (2000).

    Article  Google Scholar 

Download references


The research was supported by the National Eye Institute (EY10923), National Institute of Mental Health (K02 MH01353) and the National Science Foundation (NSF 9720327). We thank A. Forsberg for his assistance, and T. Freeman for suggesting the second experiment.

Author information



Corresponding author

Correspondence to William H. Warren Jr..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Warren, W., Kay, B., Zosh, W. et al. Optic flow is used to control human walking. Nat Neurosci 4, 213–216 (2001).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing