Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specific function of B-Raf in mediating survival of embryonic motoneurons and sensory neurons

Abstract

Embryonic sensory and motoneurons depend on neurotrophic factors for survival. Here we show that their survival requires B-Raf, which, in this function, cannot be substituted by C-Raf. Sensory and motoneurons from b-raf-deficient mice do not respond to neurotrophic factors for their survival. However, these primary neurons can be rescued by transfection of a b-raf expression plasmid. In contrast, c-raf-deficient neurons survive in response to neurotrophic factors, similarly to neurons from wild-type mice. This points to an essential and specific function of B-Raf in mediating survival of sensory and motoneurons during development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of members of the Raf kinase family in developing and postnatal spinal cord.
Figure 2: Presence of motoneurons in the lumbar spinal cord of mice lacking c-raf or b-raf.
Figure 3: Survival of isolated motoneurons from c-raf and b-raf-deficient mice.
Figure 4: Transfection of b-raf expression plasmids into b-raf −/− dorsal root ganglionic sensory neurons rescues the survival response to neurotrophic factors.
Figure 5: Semi-quantitative RT-PCR analysis of IAP-1, IAP-2 and x-IAP mRNA expression in wild-type and in c-raf and b-raf-deficient mice.

Similar content being viewed by others

References

  1. Kaplan, D. R. & Miller, F. D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391 (2000).

    Article  CAS  Google Scholar 

  2. Maina, F. & Klein, R. Hepatocyte growth factor, a versatile signal for developing neurons. Nat. Neurosci. 2, 213–217 (1999).

    Article  CAS  Google Scholar 

  3. Baloh, R. H., Enomoto, H., Johnson, E. M. Jr. & Milbrandt, J. The GDNF family ligands and receptors—implications for neural development. Curr. Opin. Neurobiol. 10, 103–110 (2000).

    Article  CAS  Google Scholar 

  4. Wang, H. G., Takayama, S., Rapp, U. R. & Reed, J. C. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc. Natl. Acad. Sci. USA 93, 7063–7068 (1996).

    Article  CAS  Google Scholar 

  5. Wang, H. G., Rapp, U. R. & Reed, J. C. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87, 629–638 (1996).

    Article  CAS  Google Scholar 

  6. Michaelidis, T. M. et al. Inactivation of the bcl-2 gene results in progressive degeneration of motoneurons, sensory and sympathetic neurons during early postnatal development. Neuron 17, 75–89 (1996).

    Article  CAS  Google Scholar 

  7. Grewal, S. S. et al. Neuronal calcium activates a rap1 and b-raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J. Biol. Chem. 275, 3722–3728 (2000).

    Article  CAS  Google Scholar 

  8. Wojnowski, L. et al. Craf-1 protein kinase is essential for mouse development. Mech. Dev. 76, 141–149 (1998).

    Article  CAS  Google Scholar 

  9. Wojnowski, L. et al. Endothelial apoptosis in Braf deficient mice. Nat. Genet. 16, 293–297 (1997).

    Article  CAS  Google Scholar 

  10. Wiese, S. et al. The anti-apoptotic protein ITA is essential for NGF-mediated survival of embryonic chick neurons. Nat. Neurosci. 2, 978–983 (1999).

    Article  CAS  Google Scholar 

  11. Perrelet, D. et al. IAP family protein delay motoneuron cell death in vivo. Eur. J. Neurosci. 12, 2059–2067 (2000).

    Article  CAS  Google Scholar 

  12. Muszynski, K. W. et al. Raf-1 protein is required for growth factor-induced proliferation of hematopoietic cells. J. Exp. Med. 181, 2189–2199 (1995).

    Article  CAS  Google Scholar 

  13. Wojnowski, L., Stancato, L. F., Larner, A. C., Rapp, U. R. & Zimmer, A. Overlapping and specific functions of Braf and Craf-1 proto-oncogenes during mouse embryogenesis. Mech. Dev. 91, 97–104 (2000).

    Article  CAS  Google Scholar 

  14. Soler, R. M. et al. Receptors of the glial cell line-derived neurotrophic factor family of neurotrophic factors signal cell survival through the phosphatidylinositol 3-kinase pathway in spinal cord motoneurons. J. Neurosci. 19, 9160–9169 (1999).

    Article  CAS  Google Scholar 

  15. Creedon, D. J., Johnson, E. M. & Lawrence, J. C. Mitogen-activated protein kinase-independent pathways mediate the effects of nerve growth factor and cAMP on neuronal survival. J. Biol. Chem. 271, 20713–20718 (1996).

    Article  CAS  Google Scholar 

  16. Anderson, C. N. G. & Tolkovsky, A. M. A role for MAPK/ERK in sympathetic neuron survival: protection against a p53-dependent, jnk-independent induction of apoptosis by cytosine arabinoside. J. Neurosci. 19, 664–673 (1999).

    Article  CAS  Google Scholar 

  17. Mazzoni, I. E., Said, F. A., Aloyz, R., Miller, F. D. & Kaplan, D. Ras regulates sympathetic neuron survival by suppressing the p53-mediated cell death pathway. J. Neurosci. 19, 9716–9727 (1999).

    Article  CAS  Google Scholar 

  18. Erhardt, P., Schremser, E. J. & Cooper, G. M. B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol. Cell Biol. 19, 5308–5315 (1999).

    Article  CAS  Google Scholar 

  19. Cook, S. J. & McCormick, F. Inhibition by cAMP of Ras-dependent activation of Raf. Science 262, 1069–1072 (1993).

    Article  CAS  Google Scholar 

  20. Cai, H. et al. Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase. Mol. Cell Biol. 17, 732–741 (1997).

    Article  CAS  Google Scholar 

  21. Dugan, L. L. et al. Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J. Biol. Chem. 274, 25842–25848 (1999).

    Article  CAS  Google Scholar 

  22. MacNicol, M. C. & MacNicol, A. M. Nerve growth factor-stimulated B-Raf catalytic activity is refractory to inhibition by cAMP-dependent protein kinase. J. Biol. Chem. 274, 13193–13197 (1999).

    Article  CAS  Google Scholar 

  23. Edwards, S. N., Buckmaster, A. E. & Tolkovsky, A. M. The death programme in cultured sympathetic neurones can be suppressed at the posttranslational level by nerve growth factor, cyclic AMP, and depolarization. J. Neurochem. 57, 2140–2143 (1991).

    Article  CAS  Google Scholar 

  24. Crowder, R. J. & Freeman, R. S. The survival of sympathetic neurons promoted by potassium depolarization, but not by cyclic AMP, requires phosphatidylinositol 3- kinase and Akt. J. Neurochem. 73, 466–475 (1999).

    Article  CAS  Google Scholar 

  25. Miller, T. M., Tansey, M. G., Johnson, E. M. Jr. & Creedon, D. J. Inhibition of phosphatidylinositol 3-kinase activity blocks depolarization- and insulin-like growth factor I-mediated survival of cerebellar granule cells. J. Biol. Chem. 272, 9847–9853 (1997).

    Article  CAS  Google Scholar 

  26. Hanson, M. G. Jr., Shen, S., Wiemelt, A. P., McMorris, F. A. & Barres, B. A. Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro. J. Neurosci. 18, 7361–7371 (1998).

    Article  CAS  Google Scholar 

  27. Wiese, S., Metzger, F., Holtmann, B. & Sendtner, M. The role of p75NTR in modulating neurotrophin survival effects in developing motoneurons. Eur. J. Neurosci. 11, 1668–1676 (1999).

    Article  CAS  Google Scholar 

  28. Sithanandam, G., Kolch, W., Duh, F. M. & Rapp, U. R. Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene 5, 1775–1780 (1990).

    CAS  PubMed  Google Scholar 

  29. Schultz, A. M., Copeland, T. D., Mark, G. E., Rapp, U. R. & Oroszlan, S. Detection of the myristylated gag-raf transforming protein with raf- specific antipeptide sera. Virology 146, 78–89 (1985).

    Article  CAS  Google Scholar 

  30. Huleihel, M. et al. Characterization of murine A-raf, a new oncogene related to the v-raf oncogene. Mol. Cell Biol. 6, 2655–2662 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 465, TP A1 and A3. We thank M. Schmied and J. Kara for technical assistance and L. Federov and B. Fröhlen for help with raf-knockout mice. We thank R. Timpl for donation of laminin and T. Jessell for the Islet 1/2 antibody provided by the Developmental Studies Hybridoma Bank (DSHB), Iowa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sendtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiese, S., Pei, G., Karch, C. et al. Specific function of B-Raf in mediating survival of embryonic motoneurons and sensory neurons. Nat Neurosci 4, 137–142 (2001). https://doi.org/10.1038/83960

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing