Enhanced recognition memory following vagus nerve stimulation in human subjects

Abstract

Neuromodulators associated with arousal modulate learning and memory, but most of these substances do not freely enter the brain from the periphery. In rodents, these neuromodulators act in part by initiating neural messages that travel via the vagus nerve to the brain, and electrical stimulation of the vagus enhances memory. We now extend that finding to human verbal learning. We examined word-recognition memory in patients enrolled in a clinical study evaluating the capacity of vagus nerve stimulation to control epilepsy. Stimulation administered after learning significantly enhanced retention. These findings confirm in humans the hypothesis that vagus nerve activation modulates memory formation similarly to arousal.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Intensity-dependent modulation of word-recognition performance.

References

  1. 1

    Eysenck, M. W. Attention and Arousal (Springer-Verlag, Berlin, 1982 ).

    Google Scholar 

  2. 2

    McGaugh, J. L. Time-dependent processes in memory storage. Science 153, 1351–1358 (1966).

    CAS  Article  Google Scholar 

  3. 3

    McGaugh, J. L. Involvement of hormonal and neuromodulatory systems in the regulation of memory storage. Annu. Rev. Neurosci. 12, 255– 287 (1989).

    CAS  Article  Google Scholar 

  4. 4

    Cahill, L. & McGaugh, J. L. Modulation of memory storage. Curr. Opin. Neurobiol. 6, 237– 242 (1996).

    CAS  Article  Google Scholar 

  5. 5

    Cahill, L., Prins, B., Weber, M. & McGaugh, J. L. Beta-adrenergic activation and memory for emotional events. Nature 371, 702–704 (1994).

    CAS  Article  Google Scholar 

  6. 6

    Nielson, K. A. & Jensen, R. A. Beta-adrenergic receptor antagonist antihypertensive medications impair arousal-induced modulation of working memory in elderly humans. Behav. Neural Biol. 62, 190–200 (1994).

    CAS  Article  Google Scholar 

  7. 7

    Broadhurst, P. L. Emotionality and the Yerkes-Dodson law. J. Exp. Psychol. 54, 345–352 (1957).

    CAS  Article  Google Scholar 

  8. 8

    Hebb, D. O. Drive and the C.N.S. (Conceptual Nervous System). Psychol. Rev. 62, 243–253 ( 1955).

    CAS  Article  Google Scholar 

  9. 9

    Yerkes, R. M. & Dodson, J. D. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18, 459–482 (1908).

    Article  Google Scholar 

  10. 10

    Williams, C. L. & Jensen, R. A. in Neuronal Control of Bodily Function, Basic, and Clinical Aspects: Vol. 6 Peripheral Signaling of the Brain: Role of Neural-Immune Interactions, Learning and Memory (eds Frederickson, R. C. A., McGaugh, J. L. & Felton, D. L.) 467–472 (Hogrefe & Huber, Toronto, 1991).

    Google Scholar 

  11. 11

    Williams, C. L. & Jensen, R. A. Effects of vagotomy on leu-enkephalin-induced changes in memory storage processes. Physiol. Behav. 54, 659–663 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Flood, J. F., Smith, G. E. & Morley, J. E. Modulation of memory storage processing by cholecystokinin: Dependence on the vagus nerve. Science 234, 832–834 (1987).

    Article  Google Scholar 

  13. 13

    Nogueira, P. J. C., Tomaz, C. & Williams, C. L. Contribution of the vagus nerve in mediating the memory-facilitating effects of substance P. Behav. Brain Res. 62, 165–169 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Williams, C. L. & McGaugh, J. L. Reversible lesions of the nucleus of the solitary tract attenuate the memory-modulating effects of posttraining epinephrine. Behav. Neurosci. 107, 955–962 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Clark, K. B., Krahl, S. E., Smith, D. C. & Jensen, R. A. Post-training unilateral vagal stimulation enhances retention performance in the rat. Neurobiol. Learn. Mem. 63, 213 –216 (1995).

    CAS  Article  Google Scholar 

  16. 16

    Clark, K. B. et al. Post-training electrical stimulation of vagal afferents with concomitant vagal efferent inactivation enhances memory storage processes in the rat. Neurobiol. Learn. Mem. 70, 364 –373 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Nielson, K. A., Radtke, R. C. & Jensen, R. A. Arousal-induced modulation of memory storage processes in humans. Neurobiol. Learn. Mem. 66, 133 –142 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Woodbury, D. M. & Woodbury, J. W. Effects of vagal stimulation on experimentally induced seizures in rats. Epilepsia 31, S7–S19 ( 1990).

    Article  Google Scholar 

  19. 19

    Woodbury, J. W. & Woodbury, D. M. Vagal stimulation reduces the severity of maximal electroshock seizures in intact rats: Use of a cuff electrode for stimulating and recording. Pacing Clin. Electrophysiol. 14, 94–107 (1991).

    CAS  Article  Google Scholar 

  20. 20

    Lockard, J. S., Congdon, W. C. & DuCharme, L. L. Feasibility and safety of vagal stimulation in a monkey model. Epilepsia 31, S20– S26 (1990).

    Article  Google Scholar 

  21. 21

    Zabara, J. Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia 33, 1005–1012 (1992).

    CAS  Article  Google Scholar 

  22. 22

    Penry, J. K. & Dean, J. C. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: Preliminary results. Epilepsia 31, S40–S43 (1990).

    Article  Google Scholar 

  23. 23

    Ben-Menachem, E. et al. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. Epilepsia 35, 515–526 (1994).

    Article  Google Scholar 

  24. 24

    Vagus Nerve Stimulation Study Group. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology 45, 224–230 (1995).

  25. 25

    Armour, J. A., Wurster, R. D. & Randall, W. C. in Neural Regulation of the Heart (ed. Randall, W. C.) 159–186 (Oxford, New York, 1977).

    Google Scholar 

  26. 26

    Paintal, A. S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53, 159–227 ( 1973).

    CAS  Article  Google Scholar 

  27. 27

    Curry, D. L. Reflex inhibition of insulin secretion: Vagus nerve involvement via CNS. Am. J. Physiol. 247, 827–832 (1984).

    Google Scholar 

  28. 28

    Cechetto, D. F. Central representations of visceral function. Fed. Proc. 46, 17–23 (1986).

    Google Scholar 

  29. 29

    Rutecki, P. Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 31, S1–S6 (1990).

    Article  Google Scholar 

  30. 30

    O'Brien, J. H., Pimpaneau, A. & Albe-Fessard, D. Evoked cortical responses to vagal, laryngeal, and facial afferents in monkeys under chloralose anesthesia. Electroencephalogr. Clin. Neurophysiol. 31, 7–20 (1971).

    CAS  Article  Google Scholar 

  31. 31

    Car, A., Jean, A. & Roman, C. A pontine primary relay for ascending projections of the superior laryngeal nerve. Exp. Brain Res. 22, 197– 210 (1975).

    CAS  Article  Google Scholar 

  32. 32

    Ko, D. et al. Vagus nerve stimulation activates central nervous system structures in epileptic patients during PET H215O blood flow imaging. Neurosurgery 39, 426–431 (1996).

    CAS  Article  Google Scholar 

  33. 33

    Krahl, S. E. Vagus nerve stimulation for the control of seizures: Possible modulatory role of the locus coeruleus. Dissertation Abstr. Int. 56 , 559 (1995). (University Microfilms No. 9516027).

    Google Scholar 

  34. 34

    Naritoku, D. K., Terry, W. J. & Helfert, R. H. Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. Epilepsy Res. 22, 53–62 ( 1995).

    CAS  Article  Google Scholar 

  35. 35

    Terry, R. S., Tarver, W. B. & Zabara, J. The implantable neurocybernetic prosthesis system. Pacing Clin. Electrophysiol. 14, 86– 93 (1991).

    CAS  Article  Google Scholar 

  36. 36

    Ramsey, R. E. et al. Vagus nerve stimulation for treatment of partial seizures: 2. Safety, side effects, and tolerability. Epilepsia 35, 627–636 (1994).

    Article  Google Scholar 

  37. 37

    Paivio, A., Yuille, J. C. & Madigan, S. A. Concreteness, imagery, and meaningfulness values for 925 nouns. J. Exp. Psychol. 76, 1– 25 (1968).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mary Aiello for scheduling patients and organizing test visits. This research was supported by Cyberonics, Inc.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert A. Jensen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clark, K., Naritoku, D., Smith, D. et al. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci 2, 94–98 (1999). https://doi.org/10.1038/4600

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing